X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fnth_prime.ma;fp=matita%2Flibrary%2Fnat%2Fnth_prime.ma;h=7b7c70bfe5cabfca704dce146034cb3ff1abad88;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/nth_prime.ma b/matita/library/nat/nth_prime.ma new file mode 100644 index 000000000..7b7c70bfe --- /dev/null +++ b/matita/library/nat/nth_prime.ma @@ -0,0 +1,201 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/primes.ma". +include "nat/lt_arith.ma". + +(* upper bound by Bertrand's conjecture. *) +(* Too difficult to prove. +let rec nth_prime n \def +match n with + [ O \Rightarrow (S(S O)) + | (S p) \Rightarrow + let previous_prime \def S (nth_prime p) in + min_aux previous_prime ((S(S O))*previous_prime) primeb]. + +theorem example8 : nth_prime (S(S O)) = (S(S(S(S(S O))))). +normalize.reflexivity. +qed. + +theorem example9 : nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). +normalize.reflexivity. +qed. + +theorem example10 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +normalize.reflexivity. +qed. *) + +theorem smallest_factor_fact: \forall n:nat. +n < smallest_factor (S n!). +intros. +apply not_le_to_lt.unfold Not. +intro. +apply (not_divides_S_fact n (smallest_factor(S n!))). +apply lt_SO_smallest_factor. +unfold lt.apply le_S_S.apply le_SO_fact. +assumption. +apply divides_smallest_factor_n. +unfold lt.apply le_S_S.apply le_O_n. +qed. + +theorem ex_prime: \forall n. (S O) \le n \to \exists m. +n < m \land m \le S n! \land (prime m). +intros. +elim H. +apply (ex_intro nat ? (S(S O))). +split.split.apply (le_n (S(S O))). +apply (le_n (S(S O))).apply (primeb_to_Prop (S(S O))). +apply (ex_intro nat ? (smallest_factor (S (S n1)!))). +split.split. +apply smallest_factor_fact. +apply le_smallest_factor_n. +(* Andrea: ancora hint non lo trova *) +apply prime_smallest_factor_n.unfold lt. +apply le_S.apply le_SSO_fact. +unfold lt.apply le_S_S.assumption. +qed. + +let rec nth_prime n \def +match n with + [ O \Rightarrow (S(S O)) + | (S p) \Rightarrow + let previous_prime \def (nth_prime p) in + let upper_bound \def S previous_prime! in + min_aux upper_bound (S previous_prime) primeb]. + +(* it works +theorem example11 : nth_prime (S(S O)) = (S(S(S(S(S O))))). +normalize.reflexivity. +qed. + +theorem example12: nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). +normalize.reflexivity. +qed. + +theorem example13 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +normalize.reflexivity. +qed. + +alias num (instance 0) = "natural number". +theorem example14 : nth_prime 18 = 67. +normalize.reflexivity. +qed. +*) + +theorem prime_nth_prime : \forall n:nat.prime (nth_prime n). +intro. +apply (nat_case n).simplify. +apply (primeb_to_Prop (S(S O))). +intro. +change with +(let previous_prime \def (nth_prime m) in +let upper_bound \def S previous_prime! in +prime (min_aux upper_bound (S previous_prime) primeb)). +apply primeb_true_to_prime. +apply f_min_aux_true. +apply (ex_intro nat ? (smallest_factor (S (nth_prime m)!))). +split.split. +apply smallest_factor_fact. +apply transitive_le; + [2: apply le_smallest_factor_n + | skip + | apply (le_plus_n_r (S (nth_prime m)) (S (fact (nth_prime m)))) + ]. +apply prime_to_primeb_true. +apply prime_smallest_factor_n.unfold lt. +apply le_S_S.apply le_SO_fact. +qed. + +(* properties of nth_prime *) +theorem increasing_nth_prime: increasing nth_prime. +unfold increasing. +intros. +change with +(let previous_prime \def (nth_prime n) in +let upper_bound \def S previous_prime! in +(S previous_prime) \le min_aux upper_bound (S previous_prime) primeb). +intros. +apply le_min_aux. +qed. + +variant lt_nth_prime_n_nth_prime_Sn :\forall n:nat. +(nth_prime n) < (nth_prime (S n)) \def increasing_nth_prime. + +theorem injective_nth_prime: injective nat nat nth_prime. +apply increasing_to_injective. +apply increasing_nth_prime. +qed. + +theorem lt_SO_nth_prime_n : \forall n:nat. (S O) \lt nth_prime n. +intros. elim n.unfold lt.apply le_n. +apply (trans_lt ? (nth_prime n1)). +assumption.apply lt_nth_prime_n_nth_prime_Sn. +qed. + +theorem lt_O_nth_prime_n : \forall n:nat. O \lt nth_prime n. +intros.apply (trans_lt O (S O)). +unfold lt. apply le_n.apply lt_SO_nth_prime_n. +qed. + +theorem lt_n_nth_prime_n : \forall n:nat. n \lt nth_prime n. +intro. +elim n + [apply lt_O_nth_prime_n + |apply (lt_to_le_to_lt ? (S (nth_prime n1))) + [unfold.apply le_S_S.assumption + |apply lt_nth_prime_n_nth_prime_Sn + ] + ] +qed. + +theorem ex_m_le_n_nth_prime_m: +\forall n: nat. nth_prime O \le n \to +\exists m. nth_prime m \le n \land n < nth_prime (S m). +intros. +apply increasing_to_le2. +exact lt_nth_prime_n_nth_prime_Sn.assumption. +qed. + +theorem lt_nth_prime_to_not_prime: \forall n,m. nth_prime n < m \to m < nth_prime (S n) +\to \lnot (prime m). +intros. +apply primeb_false_to_not_prime. +letin previous_prime \def (nth_prime n). +letin upper_bound \def (S previous_prime!). +apply (lt_min_aux_to_false primeb (S previous_prime) upper_bound m). +assumption. +unfold lt. +apply (transitive_le (S m) (nth_prime (S n)) (min_aux (S (fact (nth_prime n))) (S (nth_prime n)) primeb) ? ?); + [apply (H1). + |apply (le_n (min_aux (S (fact (nth_prime n))) (S (nth_prime n)) primeb)). + ] +qed. + +(* nth_prime enumerates all primes *) +theorem prime_to_nth_prime : \forall p:nat. prime p \to +\exists i. nth_prime i = p. +intros. +cut (\exists m. nth_prime m \le p \land p < nth_prime (S m)). +elim Hcut.elim H1. +cut (nth_prime a < p \lor nth_prime a = p). +elim Hcut1. +absurd (prime p). +assumption. +apply (lt_nth_prime_to_not_prime a).assumption.assumption. +apply (ex_intro nat ? a).assumption. +apply le_to_or_lt_eq.assumption. +apply ex_m_le_n_nth_prime_m. +simplify.unfold prime in H.elim H.assumption. +qed. +