X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fpi_p.ma;fp=matita%2Flibrary%2Fnat%2Fpi_p.ma;h=93f127372410610e5147fe02c5bf3fa59a08b2c7;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/pi_p.ma b/matita/library/nat/pi_p.ma new file mode 100644 index 000000000..93f127372 --- /dev/null +++ b/matita/library/nat/pi_p.ma @@ -0,0 +1,422 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/primes.ma". +(* include "nat/ord.ma". *) +include "nat/generic_iter_p.ma". +(* include "nat/count.ma". necessary just to use bool_to_nat and bool_to_nat_andb*) +include "nat/iteration2.ma". + +(* pi_p on nautral numbers is a specialization of iter_p_gen *) +definition pi_p: nat \to (nat \to bool) \to (nat \to nat) \to nat \def +\lambda n, p, g. (iter_p_gen n p nat g (S O) times). + +theorem true_to_pi_p_Sn: +\forall n:nat. \forall p:nat \to bool. \forall g:nat \to nat. +p n = true \to pi_p (S n) p g = (g n)*(pi_p n p g). +intros. +unfold pi_p. +apply true_to_iter_p_gen_Sn. +assumption. +qed. + +theorem false_to_pi_p_Sn: +\forall n:nat. \forall p:nat \to bool. \forall g:nat \to nat. +p n = false \to pi_p (S n) p g = pi_p n p g. +intros. +unfold pi_p. +apply false_to_iter_p_gen_Sn. +assumption. +qed. + +theorem eq_pi_p: \forall p1,p2:nat \to bool. +\forall g1,g2: nat \to nat.\forall n. +(\forall x. x < n \to p1 x = p2 x) \to +(\forall x. x < n \to g1 x = g2 x) \to +pi_p n p1 g1 = pi_p n p2 g2. +intros. +unfold pi_p. +apply eq_iter_p_gen; +assumption. +qed. + +theorem eq_pi_p1: \forall p1,p2:nat \to bool. +\forall g1,g2: nat \to nat.\forall n. +(\forall x. x < n \to p1 x = p2 x) \to +(\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to +pi_p n p1 g1 = pi_p n p2 g2. +intros. +unfold pi_p. +apply eq_iter_p_gen1; +assumption. +qed. + +theorem pi_p_false: +\forall g: nat \to nat.\forall n.pi_p n (\lambda x.false) g = S O. +intros. +unfold pi_p. +apply iter_p_gen_false. +qed. + +theorem pi_p_times: \forall n,k:nat.\forall p:nat \to bool. +\forall g: nat \to nat. +pi_p (k+n) p g += pi_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) * pi_p n p g. +intros. +unfold pi_p. +apply (iter_p_gen_plusA nat n k p g (S O) times) +[ apply sym_times. +| intros. + apply sym_eq. + apply times_n_SO +| apply associative_times +] +qed. + +theorem false_to_eq_pi_p: \forall n,m:nat.n \le m \to +\forall p:nat \to bool. +\forall g: nat \to nat. (\forall i:nat. n \le i \to i < m \to +p i = false) \to pi_p m p g = pi_p n p g. +intros. +unfold pi_p. +apply (false_to_eq_iter_p_gen); +assumption. +qed. + +theorem or_false_eq_SO_to_eq_pi_p: +\forall n,m:nat.\forall p:nat \to bool. +\forall g: nat \to nat. +n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = S O) +\to pi_p m p g = pi_p n p g. +intros. +unfold pi_p. +apply or_false_eq_baseA_to_eq_iter_p_gen + [intros.simplify.rewrite < plus_n_O.reflexivity + |assumption + |assumption + ] +qed. + +theorem pi_p2 : +\forall n,m:nat. +\forall p1,p2:nat \to bool. +\forall g: nat \to nat \to nat. +pi_p (n*m) + (\lambda x.andb (p1 (div x m)) (p2 (mod x m))) + (\lambda x.g (div x m) (mod x m)) = +pi_p n p1 + (\lambda x.pi_p m p2 (g x)). +intros. +unfold pi_p. +apply (iter_p_gen2 n m p1 p2 nat g (S O) times) +[ apply sym_times +| apply associative_times +| intros. + apply sym_eq. + apply times_n_SO +] +qed. + +theorem pi_p2' : +\forall n,m:nat. +\forall p1:nat \to bool. +\forall p2:nat \to nat \to bool. +\forall g: nat \to nat \to nat. +pi_p (n*m) + (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) + (\lambda x.g (div x m) (mod x m)) = +pi_p n p1 + (\lambda x.pi_p m (p2 x) (g x)). +intros. +unfold pi_p. +apply (iter_p_gen2' n m p1 p2 nat g (S O) times) +[ apply sym_times +| apply associative_times +| intros. + apply sym_eq. + apply times_n_SO +] +qed. + +lemma pi_p_gi: \forall g: nat \to nat. +\forall n,i.\forall p:nat \to bool.i < n \to p i = true \to +pi_p n p g = g i * pi_p n (\lambda x. andb (p x) (notb (eqb x i))) g. +intros. +unfold pi_p. +apply (iter_p_gen_gi) +[ apply sym_times +| apply associative_times +| intros. + apply sym_eq. + apply times_n_SO +| assumption +| assumption +] +qed. + +theorem eq_pi_p_gh: +\forall g,h,h1: nat \to nat.\forall n,n1. +\forall p1,p2:nat \to bool. +(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to +(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to +(\forall i. i < n \to p1 i = true \to h i < n1) \to +(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to +(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to +(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to +pi_p n p1 (\lambda x.g(h x)) = pi_p n1 p2 g. +intros. +unfold pi_p. +apply (eq_iter_p_gen_gh nat (S O) times ? ? ? g h h1 n n1 p1 p2) +[ apply sym_times +| apply associative_times +| intros. + apply sym_eq. + apply times_n_SO +| assumption +| assumption +| assumption +| assumption +| assumption +| assumption +] +qed. + +(* monotonicity *) +theorem le_pi_p: +\forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to p i = true \to g1 i \le g2 i ) \to +pi_p n p g1 \le pi_p n p g2. +intros. +generalize in match H. +elim n + [apply le_n. + |apply (bool_elim ? (p n1));intros + [rewrite > true_to_pi_p_Sn + [rewrite > true_to_pi_p_Sn in ⊢ (? ? %) + [apply le_times + [apply H2[apply le_n|assumption] + |apply H1. + intros. + apply H2[apply le_S.assumption|assumption] + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_pi_p_Sn + [rewrite > false_to_pi_p_Sn in ⊢ (? ? %) + [apply H1. + intros. + apply H2[apply le_S.assumption|assumption] + |assumption + ] + |assumption + ] + ] + ] +qed. + +theorem exp_sigma_p: \forall n,a,p. +pi_p n p (\lambda x.a) = (exp a (sigma_p n p (\lambda x.S O))). +intros. +elim n + [reflexivity + |apply (bool_elim ? (p n1)) + [intro. + rewrite > true_to_pi_p_Sn + [rewrite > true_to_sigma_p_Sn + [simplify. + rewrite > H. + reflexivity. + |assumption + ] + |assumption + ] + |intro. + rewrite > false_to_pi_p_Sn + [rewrite > false_to_sigma_p_Sn + [simplify.assumption + |assumption + ] + |assumption + ] + ] + ] +qed. + +theorem exp_sigma_p1: \forall n,a,p,f. +pi_p n p (\lambda x.(exp a (f x))) = (exp a (sigma_p n p f)). +intros. +elim n + [reflexivity + |apply (bool_elim ? (p n1)) + [intro. + rewrite > true_to_pi_p_Sn + [rewrite > true_to_sigma_p_Sn + [simplify. + rewrite > H. + rewrite > exp_plus_times. + reflexivity. + |assumption + ] + |assumption + ] + |intro. + rewrite > false_to_pi_p_Sn + [rewrite > false_to_sigma_p_Sn + [simplify.assumption + |assumption + ] + |assumption + ] + ] + ] +qed. + +theorem times_pi_p: \forall n,p,f,g. +pi_p n p (\lambda x.f x*g x) = pi_p n p f * pi_p n p g. +intros. +elim n + [simplify.reflexivity + |apply (bool_elim ? (p n1)) + [intro. + rewrite > true_to_pi_p_Sn + [rewrite > true_to_pi_p_Sn + [rewrite > true_to_pi_p_Sn + [rewrite > H.autobatch + |assumption + ] + |assumption + ] + |assumption + ] + |intro. + rewrite > false_to_pi_p_Sn + [rewrite > false_to_pi_p_Sn + [rewrite > false_to_pi_p_Sn;assumption + |assumption + ] + |assumption + ] + ] + ] +qed. + +theorem pi_p_SO: \forall n,p. +pi_p n p (\lambda i.S O) = S O. +intros.elim n + [reflexivity + |simplify.elim (p n1) + [simplify.rewrite < plus_n_O.assumption + |simplify.assumption + ] + ] +qed. + +theorem exp_pi_p: \forall n,m,p,f. +pi_p n p (\lambda x.exp (f x) m) = exp (pi_p n p f) m. +intros. +elim m + [simplify.apply pi_p_SO + |simplify. + rewrite > times_pi_p. + rewrite < H. + reflexivity + ] +qed. + +theorem exp_times_pi_p: \forall n,m,k,p,f. +pi_p n p (\lambda x.exp k (m*(f x))) = +exp (pi_p n p (\lambda x.exp k (f x))) m. +intros. +apply (trans_eq ? ? (pi_p n p (\lambda x.(exp (exp k (f x)) m)))) + [apply eq_pi_p;intros + [reflexivity + |apply sym_eq.rewrite > sym_times. + apply exp_exp_times + ] + |apply exp_pi_p + ] +qed. + + +theorem pi_p_knm: +\forall g: nat \to nat. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +pi_p k p1 g = +pi_p n p21 (\lambda x:nat.pi_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold pi_p.unfold pi_p. +apply (iter_p_gen_knm nat (S O) times sym_times assoc_times ? ? ? h11 h12) + [intros.apply sym_eq.apply times_n_SO. + |assumption + |assumption + ] +qed. + +theorem pi_p_pi_p: +\forall g: nat \to nat \to nat. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +pi_p n1 p11 + (\lambda x:nat .pi_p m1 (p12 x) (\lambda y. g x y)) = +pi_p n2 p21 + (\lambda x:nat .pi_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold pi_p.unfold pi_p. +apply (iter_p_gen_2_eq ? ? ? sym_times assoc_times ? ? ? ? h21 h22) + [intros.apply sym_eq.apply times_n_SO. + |assumption + |assumption + ] +qed. + +theorem pi_p_pi_p1: +\forall g: nat \to nat \to nat. +\forall n,m. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall x,y. x < n \to y < m \to + (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to +pi_p n p11 (\lambda x:nat.pi_p m (p12 x) (\lambda y. g x y)) = +pi_p m p21 (\lambda y:nat.pi_p n (p22 y) (\lambda x. g x y)). +intros. +unfold pi_p.unfold pi_p. +apply (iter_p_gen_iter_p_gen ? ? ? sym_times assoc_times) + [intros.apply sym_eq.apply times_n_SO. + |assumption + ] +qed. \ No newline at end of file