X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fapps_2%2Fmodels%2Fveq.ma;h=7f6e8b78979d5f9e61055435b218f6e569ccc3a6;hp=e784d3b7a8148c05e71034929822171fbfb9af43;hb=41b61472d2c475e0f69e3dfc85539da3ad2bac1e;hpb=ff612dc35167ec0c145864c9aa8ae5e1ebe20a48 diff --git a/matita/matita/contribs/lambdadelta/apps_2/models/veq.ma b/matita/matita/contribs/lambdadelta/apps_2/models/veq.ma index e784d3b7a..7f6e8b789 100644 --- a/matita/matita/contribs/lambdadelta/apps_2/models/veq.ma +++ b/matita/matita/contribs/lambdadelta/apps_2/models/veq.ma @@ -14,7 +14,7 @@ include "apps_2/models/model_props.ma". -(* EVALUATION EQUIVALENCE **************************************************) +(* EVALUATION EQUIVALENCE ***************************************************) definition veq (M): relation (evaluation M) ≝ λv1,v2. ∀d. v1 d ≗ v2 d. @@ -26,11 +26,11 @@ interpretation "evaluation equivalence (model)" lemma veq_refl (M): is_model M → reflexive … (veq M). -/2 width=1 by mq/ qed. +/2 width=1 by mr/ qed. lemma veq_repl (M): is_model M → replace_2 … (veq M) (veq M) (veq M). -/2 width=5 by mr/ qed-. +/2 width=5 by mq/ qed-. lemma veq_sym (M): is_model M → symmetric … (veq M). /3 width=5 by veq_repl, veq_refl/ qed-. @@ -38,39 +38,39 @@ lemma veq_sym (M): is_model M → symmetric … (veq M). lemma veq_trans (M): is_model M → Transitive … (veq M). /3 width=5 by veq_repl, veq_refl/ qed-. -(* Properties with extebsional equivalence **********************************) +lemma veq_canc_sn (M): is_model M → left_cancellable … (veq M). +/3 width=3 by veq_trans, veq_sym/ qed-. -lemma ext_veq (M): is_model M → - ∀lv1,lv2. lv1 ≐ lv2 → lv1 ≗{M} lv2. -/2 width=1 by mq/ qed. +lemma veq_canc_dx (M): is_model M → right_cancellable … (veq M). +/3 width=3 by veq_trans, veq_sym/ qed-. -lemma veq_repl_exteq (M): is_model M → - replace_2 … (veq M) (exteq …) (exteq …). -/2 width=5 by mr/ qed-. +(* Properties with evaluation lift ******************************************) -lemma exteq_veq_trans (M): ∀lv1,lv. lv1 ≐ lv → - ∀lv2. lv ≗{M} lv2 → lv1 ≗ lv2. -// qed-. - -(* Properties with evaluation evaluation lift *******************************) - -theorem vlift_swap (M): ∀i1,i2. i1 ≤ i2 → - ∀lv,d1,d2. ⫯[i1←d1] ⫯[i2←d2] lv ≐{?,dd M} ⫯[↑i2←d2] ⫯[i1←d1] lv. -#M #i1 #i2 #Hi12 #lv #d1 #d2 #j +theorem vlift_swap (M): is_model M → + ∀i1,i2. i1 ≤ i2 → + ∀lv,d1,d2. ⫯[i1←d1] ⫯[i2←d2] lv ≗{M} ⫯[↑i2←d2] ⫯[i1←d1] lv. +#M #HM #i1 #i2 #Hi12 #lv #d1 #d2 #j elim (lt_or_eq_or_gt j i1) #Hji1 destruct -[ >vlift_lt // >vlift_lt /2 width=3 by lt_to_le_to_lt/ - >vlift_lt /3 width=3 by lt_S, lt_to_le_to_lt/ >vlift_lt // -| >vlift_eq >vlift_lt /2 width=1 by monotonic_le_plus_l/ >vlift_eq // +[ lapply (lt_to_le_to_lt … Hji1 Hi12) #Hji2 + >vlift_lt // >vlift_lt // >vlift_lt /2 width=1 by lt_S/ >vlift_lt // + /2 width=1 by veq_refl/ +| >vlift_eq >vlift_lt /2 width=1 by monotonic_le_plus_l/ >vlift_eq + /2 width=1 by mr/ | >vlift_gt // elim (lt_or_eq_or_gt (↓j) i2) #Hji2 destruct [ >vlift_lt // >vlift_lt /2 width=1 by lt_minus_to_plus/ >vlift_gt // - | >vlift_eq <(lt_succ_pred … Hji1) >vlift_eq // - | >vlift_gt // >vlift_gt /2 width=1 by lt_minus_to_plus_r/ >vlift_gt /2 width=3 by le_to_lt_to_lt/ + /2 width=1 by veq_refl/ + | >vlift_eq <(lt_succ_pred … Hji1) >vlift_eq + /2 width=1 by mr/ + | lapply (le_to_lt_to_lt … Hi12 Hji2) #Hi1j + >vlift_gt // >vlift_gt /2 width=1 by lt_minus_to_plus_r/ >vlift_gt // + /2 width=1 by veq_refl/ ] ] -qed-. +qed. -lemma vlift_comp (M): ∀i. compatible_3 … (vlift M i) (sq M) (veq M) (veq M). -#m #i #d1 #d2 #Hd12 #lv1 #lv2 #HLv12 #j +lemma vlift_comp (M): is_model M → + ∀i. compatible_3 … (vlift M i) (sq M) (veq M) (veq M). +#M #HM #i #d1 #d2 #Hd12 #lv1 #lv2 #HLv12 #j elim (lt_or_eq_or_gt j i) #Hij destruct [ >vlift_lt // >vlift_lt // | >vlift_eq >vlift_eq // @@ -80,21 +80,16 @@ qed-. (* Properies with term interpretation ***************************************) -lemma ti_comp_l (M): is_model M → - ∀T,gv,lv1,lv2. lv1 ≗{M} lv2 → - ⟦T⟧[gv, lv1] ≗ ⟦T⟧[gv, lv2]. +lemma ti_comp (M): is_model M → + ∀T,gv1,gv2. gv1 ≗ gv2 → ∀lv1,lv2. lv1 ≗ lv2 → + ⟦T⟧[gv1, lv1] ≗{M} ⟦T⟧[gv2, lv2]. #M #HM #T elim T -T * [||| #p * | * ] -[ /4 width=3 by seq_trans, seq_sym, ms/ -| /4 width=5 by seq_sym, ml, mr/ +[ /4 width=5 by seq_trans, seq_sym, ms/ +| /4 width=5 by seq_sym, ml, mq/ | /4 width=3 by seq_trans, seq_sym, mg/ -| /5 width=5 by vlift_comp, seq_sym, md, mr/ -| /5 width=1 by vlift_comp, mi, mq/ -| /4 width=5 by seq_sym, ma, mc, mr/ -| /4 width=5 by seq_sym, me, mr/ +| /5 width=5 by vlift_comp, seq_sym, md, mq/ +| /5 width=1 by vlift_comp, mi, mr/ +| /4 width=5 by seq_sym, ma, mp, mq/ +| /4 width=5 by seq_sym, me, mq/ ] qed. - -lemma ti_ext_l (M): is_model M → - ∀T,gv,lv1,lv2. lv1 ≐ lv2 → - ⟦T⟧[gv, lv1] ≗{M} ⟦T⟧[gv, lv2]. -/3 width=1 by ti_comp_l, ext_veq/ qed.