X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frt_computation%2Flsubsx.ma;h=d976e52d1c62b410405edae0f54083f41c8c00dc;hp=0f46012343a86093eb52c43438100bff443becb6;hb=4173283e148199871d787c53c0301891deb90713;hpb=a67fc50ccfda64377e2c94c18c3a0d9265f651db diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lsubsx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lsubsx.ma index 0f4601234..d976e52d1 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lsubsx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lsubsx.ma @@ -12,45 +12,45 @@ (* *) (**************************************************************************) -include "basic_2/notation/relations/lsubeqx_6.ma". +include "basic_2/notation/relations/lsubeqx_5.ma". include "basic_2/rt_computation/rdsx.ma". (* CLEAR OF STRONGLY NORMALIZING ENTRIES FOR UNBOUND RT-TRANSITION **********) (* Note: this should be an instance of a more general sex *) (* Basic_2A1: uses: lcosx *) -inductive lsubsx (h) (o) (G): rtmap → relation lenv ≝ -| lsubsx_atom: ∀f. lsubsx h o G f (⋆) (⋆) -| lsubsx_push: ∀f,I,K1,K2. lsubsx h o G f K1 K2 → - lsubsx h o G (⫯f) (K1.ⓘ{I}) (K2.ⓘ{I}) -| lsubsx_unit: ∀f,I,K1,K2. lsubsx h o G f K1 K2 → - lsubsx h o G (↑f) (K1.ⓤ{I}) (K2.ⓧ) -| lsubsx_pair: ∀f,I,K1,K2,V. G ⊢ ⬈*[h, o, V] 𝐒⦃K2⦄ → - lsubsx h o G f K1 K2 → lsubsx h o G (↑f) (K1.ⓑ{I}V) (K2.ⓧ) +inductive lsubsx (h) (G): rtmap → relation lenv ≝ +| lsubsx_atom: ∀f. lsubsx h G f (⋆) (⋆) +| lsubsx_push: ∀f,I,K1,K2. lsubsx h G f K1 K2 → + lsubsx h G (⫯f) (K1.ⓘ{I}) (K2.ⓘ{I}) +| lsubsx_unit: ∀f,I,K1,K2. lsubsx h G f K1 K2 → + lsubsx h G (↑f) (K1.ⓤ{I}) (K2.ⓧ) +| lsubsx_pair: ∀f,I,K1,K2,V. G ⊢ ⬈*[h, V] 𝐒⦃K2⦄ → + lsubsx h G f K1 K2 → lsubsx h G (↑f) (K1.ⓑ{I}V) (K2.ⓧ) . interpretation "local environment refinement (clear)" - 'LSubEqX h o f G L1 L2 = (lsubsx h o G f L1 L2). + 'LSubEqX h f G L1 L2 = (lsubsx h G f L1 L2). (* Basic inversion lemmas ***************************************************) -fact lsubsx_inv_atom_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → +fact lsubsx_inv_atom_sn_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, g] L2 → L1 = ⋆ → L2 = ⋆. -#h #o #g #G #L1 #L2 * -g -L1 -L2 // +#h #g #G #L1 #L2 * -g -L1 -L2 // [ #f #I #K1 #K2 #_ #H destruct | #f #I #K1 #K2 #_ #H destruct | #f #I #K1 #K2 #V #_ #_ #H destruct ] qed-. -lemma lsubsx_inv_atom_sn: ∀h,o,g,G,L2. G ⊢ ⋆ ⊆ⓧ[h, o, g] L2 → L2 = ⋆. +lemma lsubsx_inv_atom_sn: ∀h,g,G,L2. G ⊢ ⋆ ⊆ⓧ[h, g] L2 → L2 = ⋆. /2 width=7 by lsubsx_inv_atom_sn_aux/ qed-. -fact lsubsx_inv_push_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → +fact lsubsx_inv_push_sn_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, g] L2 → ∀f,I,K1. g = ⫯f → L1 = K1.ⓘ{I} → - ∃∃K2. G ⊢ K1 ⊆ⓧ[h, o, f] K2 & L2 = K2.ⓘ{I}. -#h #o #g #G #L1 #L2 * -g -L1 -L2 + ∃∃K2. G ⊢ K1 ⊆ⓧ[h, f] K2 & L2 = K2.ⓘ{I}. +#h #g #G #L1 #L2 * -g -L1 -L2 [ #f #g #J #L1 #_ #H destruct | #f #I #K1 #K2 #HK12 #g #J #L1 #H1 #H2 destruct <(injective_push … H1) -g /2 width=3 by ex2_intro/ @@ -61,14 +61,14 @@ fact lsubsx_inv_push_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → ] qed-. -lemma lsubsx_inv_push_sn: ∀h,o,f,I,G,K1,L2. G ⊢ K1.ⓘ{I} ⊆ⓧ[h, o, ⫯f] L2 → - ∃∃K2. G ⊢ K1 ⊆ⓧ[h, o, f] K2 & L2 = K2.ⓘ{I}. +lemma lsubsx_inv_push_sn: ∀h,f,I,G,K1,L2. G ⊢ K1.ⓘ{I} ⊆ⓧ[h, ⫯f] L2 → + ∃∃K2. G ⊢ K1 ⊆ⓧ[h, f] K2 & L2 = K2.ⓘ{I}. /2 width=5 by lsubsx_inv_push_sn_aux/ qed-. -fact lsubsx_inv_unit_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → +fact lsubsx_inv_unit_sn_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, g] L2 → ∀f,I,K1. g = ↑f → L1 = K1.ⓤ{I} → - ∃∃K2. G ⊢ K1 ⊆ⓧ[h, o, f] K2 & L2 = K2.ⓧ. -#h #o #g #G #L1 #L2 * -g -L1 -L2 + ∃∃K2. G ⊢ K1 ⊆ⓧ[h, f] K2 & L2 = K2.ⓧ. +#h #g #G #L1 #L2 * -g -L1 -L2 [ #f #g #J #L1 #_ #H destruct | #f #I #K1 #K2 #_ #g #J #L1 #H elim (discr_push_next … H) @@ -78,15 +78,15 @@ fact lsubsx_inv_unit_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → ] qed-. -lemma lsubsx_inv_unit_sn: ∀h,o,f,I,G,K1,L2. G ⊢ K1.ⓤ{I} ⊆ⓧ[h, o, ↑f] L2 → - ∃∃K2. G ⊢ K1 ⊆ⓧ[h, o, f] K2 & L2 = K2.ⓧ. +lemma lsubsx_inv_unit_sn: ∀h,f,I,G,K1,L2. G ⊢ K1.ⓤ{I} ⊆ⓧ[h, ↑f] L2 → + ∃∃K2. G ⊢ K1 ⊆ⓧ[h, f] K2 & L2 = K2.ⓧ. /2 width=6 by lsubsx_inv_unit_sn_aux/ qed-. -fact lsubsx_inv_pair_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → +fact lsubsx_inv_pair_sn_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, g] L2 → ∀f,I,K1,V. g = ↑f → L1 = K1.ⓑ{I}V → - ∃∃K2. G ⊢ ⬈*[h, o, V] 𝐒⦃K2⦄ & - G ⊢ K1 ⊆ⓧ[h, o, f] K2 & L2 = K2.ⓧ. -#h #o #g #G #L1 #L2 * -g -L1 -L2 + ∃∃K2. G ⊢ ⬈*[h, V] 𝐒⦃K2⦄ & + G ⊢ K1 ⊆ⓧ[h, f] K2 & L2 = K2.ⓧ. +#h #g #G #L1 #L2 * -g -L1 -L2 [ #f #g #J #L1 #W #_ #H destruct | #f #I #K1 #K2 #_ #g #J #L1 #W #H elim (discr_push_next … H) @@ -97,18 +97,18 @@ fact lsubsx_inv_pair_sn_aux: ∀h,o,g,G,L1,L2. G ⊢ L1 ⊆ⓧ[h, o, g] L2 → qed-. (* Basic_2A1: uses: lcosx_inv_pair *) -lemma lsubsx_inv_pair_sn: ∀h,o,f,I,G,K1,L2,V. G ⊢ K1.ⓑ{I}V ⊆ⓧ[h, o, ↑f] L2 → - ∃∃K2. G ⊢ ⬈*[h, o, V] 𝐒⦃K2⦄ & - G ⊢ K1 ⊆ⓧ[h, o, f] K2 & L2 = K2.ⓧ. +lemma lsubsx_inv_pair_sn: ∀h,f,I,G,K1,L2,V. G ⊢ K1.ⓑ{I}V ⊆ⓧ[h, ↑f] L2 → + ∃∃K2. G ⊢ ⬈*[h, V] 𝐒⦃K2⦄ & + G ⊢ K1 ⊆ⓧ[h, f] K2 & L2 = K2.ⓧ. /2 width=6 by lsubsx_inv_pair_sn_aux/ qed-. (* Advanced inversion lemmas ************************************************) -lemma lsubsx_inv_pair_sn_gen: ∀h,o,g,I,G,K1,L2,V. G ⊢ K1.ⓑ{I}V ⊆ⓧ[h, o, g] L2 → - ∨∨ ∃∃f,K2. G ⊢ K1 ⊆ⓧ[h, o, f] K2 & g = ⫯f & L2 = K2.ⓑ{I}V - | ∃∃f,K2. G ⊢ ⬈*[h, o, V] 𝐒⦃K2⦄ & - G ⊢ K1 ⊆ⓧ[h, o, f] K2 & g = ↑f & L2 = K2.ⓧ. -#h #o #g #I #G #K1 #L2 #V #H +lemma lsubsx_inv_pair_sn_gen: ∀h,g,I,G,K1,L2,V. G ⊢ K1.ⓑ{I}V ⊆ⓧ[h, g] L2 → + ∨∨ ∃∃f,K2. G ⊢ K1 ⊆ⓧ[h, f] K2 & g = ⫯f & L2 = K2.ⓑ{I}V + | ∃∃f,K2. G ⊢ ⬈*[h, V] 𝐒⦃K2⦄ & + G ⊢ K1 ⊆ⓧ[h, f] K2 & g = ↑f & L2 = K2.ⓧ. +#h #g #I #G #K1 #L2 #V #H elim (pn_split g) * #f #Hf destruct [ elim (lsubsx_inv_push_sn … H) -H /3 width=5 by ex3_2_intro, or_introl/ | elim (lsubsx_inv_pair_sn … H) -H /3 width=6 by ex4_2_intro, or_intror/ @@ -117,9 +117,9 @@ qed-. (* Advanced forward lemmas **************************************************) -lemma lsubsx_fwd_bind_sn: ∀h,o,g,I1,G,K1,L2. G ⊢ K1.ⓘ{I1} ⊆ⓧ[h, o, g] L2 → - ∃∃I2,K2. G ⊢ K1 ⊆ⓧ[h, o, ⫱g] K2 & L2 = K2.ⓘ{I2}. -#h #o #g #I1 #G #K1 #L2 +lemma lsubsx_fwd_bind_sn: ∀h,g,I1,G,K1,L2. G ⊢ K1.ⓘ{I1} ⊆ⓧ[h, g] L2 → + ∃∃I2,K2. G ⊢ K1 ⊆ⓧ[h, ⫱g] K2 & L2 = K2.ⓘ{I2}. +#h #g #I1 #G #K1 #L2 elim (pn_split g) * #f #Hf destruct [ #H elim (lsubsx_inv_push_sn … H) -H | cases I1 -I1 #I1 @@ -132,8 +132,8 @@ qed-. (* Basic properties *********************************************************) -lemma lsubsx_eq_repl_back: ∀h,o,G,L1,L2. eq_repl_back … (λf. G ⊢ L1 ⊆ⓧ[h, o, f] L2). -#h #o #G #L1 #L2 #f1 #H elim H -L1 -L2 -f1 // +lemma lsubsx_eq_repl_back: ∀h,G,L1,L2. eq_repl_back … (λf. G ⊢ L1 ⊆ⓧ[h, f] L2). +#h #G #L1 #L2 #f1 #H elim H -L1 -L2 -f1 // [ #f #I #L1 #L2 #_ #IH #x #H elim (eq_inv_px … H) -H /3 width=3 by lsubsx_push/ | #f #I #L1 #L2 #_ #IH #x #H @@ -143,15 +143,15 @@ lemma lsubsx_eq_repl_back: ∀h,o,G,L1,L2. eq_repl_back … (λf. G ⊢ L1 ⊆ ] qed-. -lemma lsubsx_eq_repl_fwd: ∀h,o,G,L1,L2. eq_repl_fwd … (λf. G ⊢ L1 ⊆ⓧ[h, o, f] L2). -#h #o #G #L1 #L2 @eq_repl_sym /2 width=3 by lsubsx_eq_repl_back/ +lemma lsubsx_eq_repl_fwd: ∀h,G,L1,L2. eq_repl_fwd … (λf. G ⊢ L1 ⊆ⓧ[h, f] L2). +#h #G #L1 #L2 @eq_repl_sym /2 width=3 by lsubsx_eq_repl_back/ qed-. (* Advanced properties ******************************************************) (* Basic_2A1: uses: lcosx_O *) -lemma lsubsx_refl: ∀h,o,f,G. 𝐈⦃f⦄ → reflexive … (lsubsx h o G f). -#h #o #f #G #Hf #L elim L -L +lemma lsubsx_refl: ∀h,f,G. 𝐈⦃f⦄ → reflexive … (lsubsx h G f). +#h #f #G #Hf #L elim L -L /3 width=3 by lsubsx_eq_repl_back, lsubsx_push, eq_push_inv_isid/ qed.