X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frt_transition%2Fcpx.ma;h=3da67484aaa0d1f427d6cb6decbcb85a7b363226;hp=3df213a4f450b8a6cf39161d8f5a78ad6f977aff;hb=19a25bf176255055193372554437729a6fa1894c;hpb=75f395f0febd02de8e0f881d918a8812b1425c8d diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma index 3df213a4f..3da67484a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma @@ -15,13 +15,13 @@ include "basic_2/notation/relations/predty_5.ma". include "basic_2/rt_transition/cpg.ma". -(* UNCOUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS *************) +(* UNBOUND CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************) definition cpx (h): relation4 genv lenv term term ≝ λG,L,T1,T2. ∃c. ⦃G, L⦄ ⊢ T1 ⬈[eq_f, c, h] T2. interpretation - "uncounted context-sensitive parallel rt-transition (term)" + "unbound context-sensitive parallel rt-transition (term)" 'PRedTy h G L T1 T2 = (cpx h G L T1 T2). (* Basic properties *********************************************************) @@ -37,7 +37,7 @@ lemma cpx_delta: ∀h,I,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 → qed. lemma cpx_lref: ∀h,I,G,K,T,U,i. ⦃G, K⦄ ⊢ #i ⬈[h] T → - ⬆*[1] T ≘ U → ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[h] U. + ⬆*[1] T ≘ U → ⦃G, K.ⓘ{I}⦄ ⊢ #↑i ⬈[h] U. #h #I #G #K #T #U #i * /3 width=4 by cpg_lref, ex_intro/ qed. @@ -56,9 +56,10 @@ lemma cpx_flat: ∀h,I,G,L,V1,V2,T1,T2. /3 width=5 by cpg_appl, cpg_cast, ex_intro/ qed. -lemma cpx_zeta: ∀h,G,L,V,T1,T,T2. ⦃G, L.ⓓV⦄ ⊢ T1 ⬈[h] T → - ⬆*[1] T2 ≘ T → ⦃G, L⦄ ⊢ +ⓓV.T1 ⬈[h] T2. -#h #G #L #V #T1 #T #T2 * +lemma cpx_zeta (h) (G) (L): + ∀T1,T. ⬆*[1] T ≘ T1 → ∀T2. ⦃G, L⦄ ⊢ T ⬈[h] T2 → + ∀V. ⦃G, L⦄ ⊢ +ⓓV.T1 ⬈[h] T2. +#h #G #L #T1 #T #HT1 #T2 * /3 width=4 by cpg_zeta, ex_intro/ qed. @@ -99,6 +100,12 @@ lemma cpx_pair_sn: ∀h,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → #h * /2 width=2 by cpx_flat, cpx_bind/ qed. +lemma cpg_cpx (h) (Rt) (c) (G) (L): + ∀T1,T2. ⦃G,L⦄ ⊢ T1 ⬈[Rt,c,h] T2 → ⦃G,L⦄ ⊢ T1 ⬈[h] T2. +#h #Rt #c #G #L #T1 #T2 #H elim H -c -G -L -T1 -T2 +/2 width=3 by cpx_theta, cpx_beta, cpx_ee, cpx_eps, cpx_zeta, cpx_flat, cpx_bind, cpx_lref, cpx_delta/ +qed. + (* Basic inversion lemmas ***************************************************) lemma cpx_inv_atom1: ∀h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ⬈[h] T2 → @@ -107,7 +114,7 @@ lemma cpx_inv_atom1: ∀h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ⬈[h] T2 → | ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≘ T2 & L = K.ⓑ{I}V1 & J = LRef 0 | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≘ T2 & - L = K.ⓘ{I} & J = LRef (⫯i). + L = K.ⓘ{I} & J = LRef (↑i). #h #J #G #L #T2 * #c #H elim (cpg_inv_atom1 … H) -H * /4 width=8 by or4_intro0, or4_intro1, or4_intro2, or4_intro3, ex4_4_intro, ex2_intro, ex_intro/ qed-. @@ -126,8 +133,8 @@ lemma cpx_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ⬈[h] T2 → /4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/ qed-. -lemma cpx_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[h] T2 → - ∨∨ T2 = #(⫯i) +lemma cpx_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #↑i ⬈[h] T2 → + ∨∨ T2 = #(↑i) | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≘ T2 & L = K.ⓘ{I}. #h #G #L #T2 #i * #c #H elim (cpg_inv_lref1 … H) -H * /4 width=6 by ex3_3_intro, ex_intro, or_introl, or_intror/ @@ -140,7 +147,7 @@ qed-. lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] U2 → ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 & U2 = ⓑ{p,I}V2.T2 - | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≘ T & + | ∃∃T. ⬆*[1] T ≘ T1 & ⦃G, L⦄ ⊢ T ⬈[h] U2 & p = true & I = Abbr. #h #p #I #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_bind1 … H) -H * /4 width=5 by ex4_intro, ex3_2_intro, ex_intro, or_introl, or_intror/ @@ -149,7 +156,7 @@ qed-. lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[h] U2 → ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T2 & U2 = ⓓ{p}V2.T2 - | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≘ T & p = true. + | ∃∃T. ⬆*[1] T ≘ T1 & ⦃G, L⦄ ⊢ T ⬈[h] U2 & p = true. #h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abbr1 … H) -H * /4 width=5 by ex3_2_intro, ex3_intro, ex_intro, or_introl, or_intror/ qed-. @@ -192,8 +199,8 @@ lemma cpx_inv_zero1_pair: ∀h,I,G,K,V1,T2. ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[h] T2 /4 width=3 by ex2_intro, ex_intro, or_intror, or_introl/ qed-. -lemma cpx_inv_lref1_bind: ∀h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[h] T2 → - ∨∨ T2 = #(⫯i) +lemma cpx_inv_lref1_bind: ∀h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #↑i ⬈[h] T2 → + ∨∨ T2 = #(↑i) | ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≘ T2. #h #I #G #L #T2 #i * #c #H elim (cpg_inv_lref1_bind … H) -H * /4 width=3 by ex2_intro, ex_intro, or_introl, or_intror/ @@ -231,31 +238,31 @@ qed-. (* Basic eliminators ********************************************************) -lemma cpx_ind: ∀h. ∀R:relation4 genv lenv term term. - (∀I,G,L. R G L (⓪{I}) (⓪{I})) → - (∀G,L,s. R G L (⋆s) (⋆(next h s))) → - (∀I,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 → R G K V1 V2 → - ⬆*[1] V2 ≘ W2 → R G (K.ⓑ{I}V1) (#0) W2 - ) → (∀I,G,K,T,U,i. ⦃G, K⦄ ⊢ #i ⬈[h] T → R G K (#i) T → - ⬆*[1] T ≘ U → R G (K.ⓘ{I}) (#⫯i) (U) +lemma cpx_ind: ∀h. ∀Q:relation4 genv lenv term term. + (∀I,G,L. Q G L (⓪{I}) (⓪{I})) → + (∀G,L,s. Q G L (⋆s) (⋆(next h s))) → + (∀I,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 → Q G K V1 V2 → + ⬆*[1] V2 ≘ W2 → Q G (K.ⓑ{I}V1) (#0) W2 + ) → (∀I,G,K,T,U,i. ⦃G, K⦄ ⊢ #i ⬈[h] T → Q G K (#i) T → + ⬆*[1] T ≘ U → Q G (K.ⓘ{I}) (#↑i) (U) ) → (∀p,I,G,L,V1,V2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 → - R G L V1 V2 → R G (L.ⓑ{I}V1) T1 T2 → R G L (ⓑ{p,I}V1.T1) (ⓑ{p,I}V2.T2) + Q G L V1 V2 → Q G (L.ⓑ{I}V1) T1 T2 → Q G L (ⓑ{p,I}V1.T1) (ⓑ{p,I}V2.T2) ) → (∀I,G,L,V1,V2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → - R G L V1 V2 → R G L T1 T2 → R G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) - ) → (∀G,L,V,T1,T,T2. ⦃G, L.ⓓV⦄ ⊢ T1 ⬈[h] T → R G (L.ⓓV) T1 T → - ⬆*[1] T2 ≘ T → R G L (+ⓓV.T1) T2 - ) → (∀G,L,V,T1,T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → R G L T1 T2 → - R G L (ⓝV.T1) T2 - ) → (∀G,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → R G L V1 V2 → - R G L (ⓝV1.T) V2 + Q G L V1 V2 → Q G L T1 T2 → Q G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) + ) → (∀G,L,V,T1,T,T2. ⬆*[1] T ≘ T1 → ⦃G, L⦄ ⊢ T ⬈[h] T2 → Q G L T T2 → + Q G L (+ⓓV.T1) T2 + ) → (∀G,L,V,T1,T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → Q G L T1 T2 → + Q G L (ⓝV.T1) T2 + ) → (∀G,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → Q G L V1 V2 → + Q G L (ⓝV1.T) V2 ) → (∀p,G,L,V1,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L⦄ ⊢ W1 ⬈[h] W2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ⬈[h] T2 → - R G L V1 V2 → R G L W1 W2 → R G (L.ⓛW1) T1 T2 → - R G L (ⓐV1.ⓛ{p}W1.T1) (ⓓ{p}ⓝW2.V2.T2) + Q G L V1 V2 → Q G L W1 W2 → Q G (L.ⓛW1) T1 T2 → + Q G L (ⓐV1.ⓛ{p}W1.T1) (ⓓ{p}ⓝW2.V2.T2) ) → (∀p,G,L,V1,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V → ⦃G, L⦄ ⊢ W1 ⬈[h] W2 → ⦃G, L.ⓓW1⦄ ⊢ T1 ⬈[h] T2 → - R G L V1 V → R G L W1 W2 → R G (L.ⓓW1) T1 T2 → - ⬆*[1] V ≘ V2 → R G L (ⓐV1.ⓓ{p}W1.T1) (ⓓ{p}W2.ⓐV2.T2) + Q G L V1 V → Q G L W1 W2 → Q G (L.ⓓW1) T1 T2 → + ⬆*[1] V ≘ V2 → Q G L (ⓐV1.ⓓ{p}W1.T1) (ⓓ{p}W2.ⓐV2.T2) ) → - ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → R G L T1 T2. -#h #R #IH1 #IH2 #IH3 #IH4 #IH5 #IH6 #IH7 #IH8 #IH9 #IH10 #IH11 #G #L #T1 #T2 + ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → Q G L T1 T2. +#h #Q #IH1 #IH2 #IH3 #IH4 #IH5 #IH6 #IH7 #IH8 #IH9 #IH10 #IH11 #G #L #T1 #T2 * #c #H elim H -c -G -L -T1 -T2 /3 width=4 by ex_intro/ qed-.