X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fstatic%2Flfxs_fsle.ma;h=cc7218982c531e63403457063615dcccef4cb256;hp=0f3d67132bac5300154b55653f75175a1dd6ef5b;hb=47a745462a714af9d65cea7b61af56524bd98fa1;hpb=990f97071a9939d47be16b36f6045d3b23f218e0 diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lfxs_fsle.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lfxs_fsle.ma index 0f3d67132..cc7218982 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lfxs_fsle.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lfxs_fsle.ma @@ -12,8 +12,10 @@ (* *) (**************************************************************************) -include "basic_2/static/fsle.ma". -include "basic_2/static/lfxs.ma". +include "basic_2/relocation/lexs_length.ma". +include "basic_2/static/frees_drops.ma". +include "basic_2/static/fsle_fsle.ma". +include "basic_2/static/lfxs_lfxs.ma". (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****) @@ -22,3 +24,139 @@ definition R_fsle_compatible: predicate (relation3 …) ≝ λRN. definition lfxs_fsle_compatible: predicate (relation3 …) ≝ λRN. ∀L1,L2,T. L1 ⪤*[RN, T] L2 → ⦃L2, T⦄ ⊆ ⦃L1, T⦄. + +(* Basic inversions with free variables inclusion for restricted closures ***) + +lemma frees_lexs_conf: ∀R. lfxs_fsle_compatible R → + ∀L1,T,f1. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 → + ∀L2. L1 ⪤*[cext2 R, cfull, f1] L2 → + ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1. +#R #HR #L1 #T #f1 #Hf1 #L2 #H1L +lapply (HR L1 L2 T ?) /2 width=3 by ex2_intro/ #H2L +@(fsle_frees_trans_eq … H2L … Hf1) /3 width=4 by lexs_fwd_length, sym_eq/ +qed-. + +(* Properties with free variables inclusion for restricted closures *********) + +(* Note: we just need lveq_inv_refl: ∀L,n1,n2. L ≋ⓧ*[n1, n2] L → ∧∧ 0 = n1 & 0 = n2 *) +lemma fsle_lfxs_trans: ∀R,L1,T1,T2. ⦃L1, T1⦄ ⊆ ⦃L1, T2⦄ → + ∀L2. L1 ⪤*[R, T2] L2 → L1 ⪤*[R, T1] L2. +#R #L1 #T1 #T2 * #n1 #n2 #f1 #f2 #Hf1 #Hf2 #Hn #Hf #L2 #HL12 +elim (lveq_inj_length … Hn ?) // #H1 #H2 destruct +/4 width=5 by lfxs_inv_frees, sle_lexs_trans, ex2_intro/ +qed-. + +lemma lfxs_sym: ∀R. lfxs_fsle_compatible R → + (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) → + ∀T. symmetric … (lfxs R T). +#R #H1R #H2R #T #L1 #L2 +* #f1 #Hf1 #HL12 +elim (frees_lexs_conf … Hf1 … HL12) -Hf1 // +/5 width=5 by sle_lexs_trans, lexs_sym, cext2_sym, ex2_intro/ +qed-. + +lemma lfxs_pair_sn_split: ∀R1,R2. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → + lfxs_fsle_compatible R1 → + ∀L1,L2,V. L1 ⪤*[R1, V] L2 → ∀I,T. + ∃∃L. L1 ⪤*[R1, ②{I}V.T] L & L ⪤*[R2, V] L2. +#R1 #R2 #HR1 #HR2 #HR #L1 #L2 #V * #f #Hf #HL12 * [ #p ] #I #T +[ elim (frees_total L1 (ⓑ{p,I}V.T)) #g #Hg + elim (frees_inv_bind … Hg) #y1 #y2 #H #_ #Hy +| elim (frees_total L1 (ⓕ{I}V.T)) #g #Hg + elim (frees_inv_flat … Hg) #y1 #y2 #H #_ #Hy +] +lapply(frees_mono … H … Hf) -H #H1 +lapply (sor_eq_repl_back1 … Hy … H1) -y1 #Hy +lapply (sor_inv_sle_sn … Hy) -y2 #Hfg +elim (lexs_sle_split (cext2 R1) (cext2 R2) … HL12 … Hfg) -HL12 /2 width=1 by ext2_refl/ #L #HL1 #HL2 +lapply (sle_lexs_trans … HL1 … Hfg) // #H +elim (frees_lexs_conf … Hf … H) -Hf -H +/4 width=7 by sle_lexs_trans, ex2_intro/ +qed-. + +lemma lfxs_flat_dx_split: ∀R1,R2. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → + lfxs_fsle_compatible R1 → + ∀L1,L2,T. L1 ⪤*[R1, T] L2 → ∀I,V. + ∃∃L. L1 ⪤*[R1, ⓕ{I}V.T] L & L ⪤*[R2, T] L2. +#R1 #R2 #HR1 #HR2 #HR #L1 #L2 #T * #f #Hf #HL12 #I #V +elim (frees_total L1 (ⓕ{I}V.T)) #g #Hg +elim (frees_inv_flat … Hg) #y1 #y2 #_ #H #Hy +lapply(frees_mono … H … Hf) -H #H2 +lapply (sor_eq_repl_back2 … Hy … H2) -y2 #Hy +lapply (sor_inv_sle_dx … Hy) -y1 #Hfg +elim (lexs_sle_split (cext2 R1) (cext2 R2) … HL12 … Hfg) -HL12 /2 width=1 by ext2_refl/ #L #HL1 #HL2 +lapply (sle_lexs_trans … HL1 … Hfg) // #H +elim (frees_lexs_conf … Hf … H) -Hf -H +/4 width=7 by sle_lexs_trans, ex2_intro/ +qed-. + +lemma lfxs_bind_dx_split: ∀R1,R2. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → + lfxs_fsle_compatible R1 → + ∀I,L1,L2,V1,T. L1.ⓑ{I}V1 ⪤*[R1, T] L2 → ∀p. + ∃∃L,V. L1 ⪤*[R1, ⓑ{p,I}V1.T] L & L.ⓑ{I}V ⪤*[R2, T] L2 & R1 L1 V1 V. +#R1 #R2 #HR1 #HR2 #HR #I #L1 #L2 #V1 #T * #f #Hf #HL12 #p +elim (frees_total L1 (ⓑ{p,I}V1.T)) #g #Hg +elim (frees_inv_bind … Hg) #y1 #y2 #_ #H #Hy +lapply(frees_mono … H … Hf) -H #H2 +lapply (tl_eq_repl … H2) -H2 #H2 +lapply (sor_eq_repl_back2 … Hy … H2) -y2 #Hy +lapply (sor_inv_sle_dx … Hy) -y1 #Hfg +lapply (sle_inv_tl_sn … Hfg) -Hfg #Hfg +elim (lexs_sle_split (cext2 R1) (cext2 R2) … HL12 … Hfg) -HL12 /2 width=1 by ext2_refl/ #Y #H #HL2 +lapply (sle_lexs_trans … H … Hfg) // #H0 +elim (lexs_inv_next1 … H) -H #Z #L #HL1 #H +elim (ext2_inv_pair_sn … H) -H #V #HV #H1 #H2 destruct +elim (frees_lexs_conf … Hf … H0) -Hf -H0 +/4 width=7 by sle_lexs_trans, ex3_2_intro, ex2_intro/ +qed-. + +lemma lfxs_bind_dx_split_void: ∀R1,R2. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → + lfxs_fsle_compatible R1 → + ∀L1,L2,T. L1.ⓧ ⪤*[R1, T] L2 → ∀p,I,V. + ∃∃L. L1 ⪤*[R1, ⓑ{p,I}V.T] L & L.ⓧ ⪤*[R2, T] L2. +#R1 #R2 #HR1 #HR2 #HR #L1 #L2 #T * #f #Hf #HL12 #p #I #V +elim (frees_total L1 (ⓑ{p,I}V.T)) #g #Hg +elim (frees_inv_bind_void … Hg) #y1 #y2 #_ #H #Hy +lapply(frees_mono … H … Hf) -H #H2 +lapply (tl_eq_repl … H2) -H2 #H2 +lapply (sor_eq_repl_back2 … Hy … H2) -y2 #Hy +lapply (sor_inv_sle_dx … Hy) -y1 #Hfg +lapply (sle_inv_tl_sn … Hfg) -Hfg #Hfg +elim (lexs_sle_split (cext2 R1) (cext2 R2) … HL12 … Hfg) -HL12 /2 width=1 by ext2_refl/ #Y #H #HL2 +lapply (sle_lexs_trans … H … Hfg) // #H0 +elim (lexs_inv_next1 … H) -H #Z #L #HL1 #H +elim (ext2_inv_unit_sn … H) -H #H destruct +elim (frees_lexs_conf … Hf … H0) -Hf -H0 +/4 width=7 by sle_lexs_trans, ex2_intro/ (* note: 2 ex2_intro *) +qed-. + +(* Main properties with free variables inclusion for restricted closures ****) + +theorem lfxs_conf: ∀R1,R2. + lfxs_fsle_compatible R1 → + lfxs_fsle_compatible R2 → + R_confluent2_lfxs R1 R2 R1 R2 → + ∀T. confluent2 … (lfxs R1 T) (lfxs R2 T). +#R1 #R2 #HR1 #HR2 #HR12 #T #L0 #L1 * #f1 #Hf1 #HL01 #L2 * #f #Hf #HL02 +lapply (frees_mono … Hf1 … Hf) -Hf1 #Hf12 +lapply (lexs_eq_repl_back … HL01 … Hf12) -f1 #HL01 +elim (lexs_conf … HL01 … HL02) /2 width=3 by ex2_intro/ [ | -HL01 -HL02 ] +[ #L #HL1 #HL2 + elim (frees_lexs_conf … Hf … HL01) // -HR1 -HL01 #f1 #Hf1 #H1 + elim (frees_lexs_conf … Hf … HL02) // -HR2 -HL02 #f2 #Hf2 #H2 + lapply (sle_lexs_trans … HL1 … H1) // -HL1 -H1 #HL1 + lapply (sle_lexs_trans … HL2 … H2) // -HL2 -H2 #HL2 + /3 width=5 by ex2_intro/ +| #g * #I0 [2: #V0 ] #K0 #n #HLK0 #Hgf #Z1 #H1 #Z2 #H2 #K1 #HK01 #K2 #HK02 + [ elim (ext2_inv_pair_sn … H1) -H1 #V1 #HV01 #H destruct + elim (ext2_inv_pair_sn … H2) -H2 #V2 #HV02 #H destruct + elim (frees_inv_drops_next … Hf … HLK0 … Hgf) -Hf -HLK0 -Hgf #g0 #Hg0 #H0 + lapply (sle_lexs_trans … HK01 … H0) // -HK01 #HK01 + lapply (sle_lexs_trans … HK02 … H0) // -HK02 #HK02 + elim (HR12 … HV01 … HV02 K1 … K2) /3 width=3 by ext2_pair, ex2_intro/ + | lapply (ext2_inv_unit_sn … H1) -H1 #H destruct + lapply (ext2_inv_unit_sn … H2) -H2 #H destruct + /3 width=3 by ext2_unit, ex2_intro/ + ] +] +qed-.