X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fstatic%2Flsubr.ma;h=382458d9eb2fb22e7a5a67d00320473569804a1b;hp=fe7ce260856c39122a88958771e137e5de3acb28;hb=222044da28742b24584549ba86b1805a87def070;hpb=f82a900182012664dd58eb1d8ab012c2a6f541ab diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsubr.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsubr.ma index fe7ce2608..382458d9e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsubr.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsubr.ma @@ -13,14 +13,17 @@ (**************************************************************************) include "basic_2/notation/relations/lrsubeqc_2.ma". -include "basic_2/grammar/lenv.ma". +include "basic_2/syntax/lenv.ma". (* RESTRICTED REFINEMENT FOR LOCAL ENVIRONMENTS *****************************) +(* Basic_2A1: just tpr_cpr and tprs_cprs require the extended lsubr_atom *) +(* Basic_2A1: includes: lsubr_pair *) inductive lsubr: relation lenv ≝ -| lsubr_atom: ∀L. lsubr L (⋆) -| lsubr_pair: ∀I,L1,L2,V. lsubr L1 L2 → lsubr (L1.ⓑ{I}V) (L2.ⓑ{I}V) +| lsubr_atom: lsubr (⋆) (⋆) +| lsubr_bind: ∀I,L1,L2. lsubr L1 L2 → lsubr (L1.ⓘ{I}) (L2.ⓘ{I}) | lsubr_beta: ∀L1,L2,V,W. lsubr L1 L2 → lsubr (L1.ⓓⓝW.V) (L2.ⓛW) +| lsubr_unit: ∀I1,I2,L1,L2,V. lsubr L1 L2 → lsubr (L1.ⓑ{I1}V) (L2.ⓤ{I2}) . interpretation @@ -30,74 +33,144 @@ interpretation (* Basic properties *********************************************************) lemma lsubr_refl: ∀L. L ⫃ L. -#L elim L -L /2 width=1 by lsubr_atom, lsubr_pair/ +#L elim L -L /2 width=1 by lsubr_atom, lsubr_bind/ qed. (* Basic inversion lemmas ***************************************************) fact lsubr_inv_atom1_aux: ∀L1,L2. L1 ⫃ L2 → L1 = ⋆ → L2 = ⋆. #L1 #L2 * -L1 -L2 // -[ #I #L1 #L2 #V #_ #H destruct +[ #I #L1 #L2 #_ #H destruct | #L1 #L2 #V #W #_ #H destruct +| #I1 #I2 #L1 #L2 #V #_ #H destruct ] qed-. lemma lsubr_inv_atom1: ∀L2. ⋆ ⫃ L2 → L2 = ⋆. /2 width=3 by lsubr_inv_atom1_aux/ qed-. -fact lsubr_inv_abst1_aux: ∀L1,L2. L1 ⫃ L2 → ∀K1,W. L1 = K1.ⓛW → - L2 = ⋆ ∨ ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓛW. +fact lsubr_inv_bind1_aux: ∀L1,L2. L1 ⫃ L2 → ∀I,K1. L1 = K1.ⓘ{I} → + ∨∨ ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓘ{I} + | ∃∃K2,V,W. K1 ⫃ K2 & L2 = K2.ⓛW & + I = BPair Abbr (ⓝW.V) + | ∃∃J1,J2,K2,V. K1 ⫃ K2 & L2 = K2.ⓤ{J2} & + I = BPair J1 V. #L1 #L2 * -L1 -L2 -[ #L #K1 #W #H destruct /2 width=1 by or_introl/ -| #I #L1 #L2 #V #HL12 #K1 #W #H destruct /3 width=3 by ex2_intro, or_intror/ -| #L1 #L2 #V1 #V2 #_ #K1 #W #H destruct +[ #J #K1 #H destruct +| #I #L1 #L2 #HL12 #J #K1 #H destruct /3 width=3 by or3_intro0, ex2_intro/ +| #L1 #L2 #V #W #HL12 #J #K1 #H destruct /3 width=6 by or3_intro1, ex3_3_intro/ +| #I1 #I2 #L1 #L2 #V #HL12 #J #K1 #H destruct /3 width=4 by or3_intro2, ex3_4_intro/ ] qed-. -lemma lsubr_inv_abst1: ∀K1,L2,W. K1.ⓛW ⫃ L2 → - L2 = ⋆ ∨ ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓛW. -/2 width=3 by lsubr_inv_abst1_aux/ qed-. +(* Basic_2A1: uses: lsubr_inv_pair1 *) +lemma lsubr_inv_bind1: ∀I,K1,L2. K1.ⓘ{I} ⫃ L2 → + ∨∨ ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓘ{I} + | ∃∃K2,V,W. K1 ⫃ K2 & L2 = K2.ⓛW & + I = BPair Abbr (ⓝW.V) + | ∃∃J1,J2,K2,V. K1 ⫃ K2 & L2 = K2.ⓤ{J2} & + I = BPair J1 V. +/2 width=3 by lsubr_inv_bind1_aux/ qed-. + +fact lsubr_inv_atom2_aux: ∀L1,L2. L1 ⫃ L2 → L2 = ⋆ → L1 = ⋆. +#L1 #L2 * -L1 -L2 // +[ #I #L1 #L2 #_ #H destruct +| #L1 #L2 #V #W #_ #H destruct +| #I1 #I2 #L1 #L2 #V #_ #H destruct +] +qed-. -fact lsubr_inv_pair2_aux: ∀L1,L2. L1 ⫃ L2 → ∀I,K2,W. L2 = K2.ⓑ{I}W → - (∃∃K1. K1 ⫃ K2 & L1 = K1.ⓑ{I}W) ∨ - ∃∃K1,V. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V & I = Abst. +lemma lsubr_inv_atom2: ∀L1. L1 ⫃ ⋆ → L1 = ⋆. +/2 width=3 by lsubr_inv_atom2_aux/ qed-. + +fact lsubr_inv_bind2_aux: ∀L1,L2. L1 ⫃ L2 → ∀I,K2. L2 = K2.ⓘ{I} → + ∨∨ ∃∃K1. K1 ⫃ K2 & L1 = K1.ⓘ{I} + | ∃∃K1,W,V. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V & I = BPair Abst W + | ∃∃J1,J2,K1,V. K1 ⫃ K2 & L1 = K1.ⓑ{J1}V & I = BUnit J2. #L1 #L2 * -L1 -L2 -[ #L #J #K2 #W #H destruct -| #I #L1 #L2 #V #HL12 #J #K2 #W #H destruct /3 width=3 by ex2_intro, or_introl/ -| #L1 #L2 #V1 #V2 #HL12 #J #K2 #W #H destruct /3 width=4 by ex3_2_intro, or_intror/ +[ #J #K2 #H destruct +| #I #L1 #L2 #HL12 #J #K2 #H destruct /3 width=3 by ex2_intro, or3_intro0/ +| #L1 #L2 #V1 #V2 #HL12 #J #K2 #H destruct /3 width=6 by ex3_3_intro, or3_intro1/ +| #I1 #I2 #L1 #L2 #V #HL12 #J #K2 #H destruct /3 width=5 by ex3_4_intro, or3_intro2/ ] qed-. -lemma lsubr_inv_pair2: ∀I,L1,K2,W. L1 ⫃ K2.ⓑ{I}W → - (∃∃K1. K1 ⫃ K2 & L1 = K1.ⓑ{I}W) ∨ - ∃∃K1,V1. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V1 & I = Abst. -/2 width=3 by lsubr_inv_pair2_aux/ qed-. +lemma lsubr_inv_bind2: ∀I,L1,K2. L1 ⫃ K2.ⓘ{I} → + ∨∨ ∃∃K1. K1 ⫃ K2 & L1 = K1.ⓘ{I} + | ∃∃K1,W,V. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V & I = BPair Abst W + | ∃∃J1,J2,K1,V. K1 ⫃ K2 & L1 = K1.ⓑ{J1}V & I = BUnit J2. +/2 width=3 by lsubr_inv_bind2_aux/ qed-. (* Advanced inversion lemmas ************************************************) +lemma lsubr_inv_abst1: ∀K1,L2,W. K1.ⓛW ⫃ L2 → + ∨∨ ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓛW + | ∃∃I2,K2. K1 ⫃ K2 & L2 = K2.ⓤ{I2}. +#K1 #L2 #W #H elim (lsubr_inv_bind1 … H) -H * +/3 width=4 by ex2_2_intro, ex2_intro, or_introl, or_intror/ +#K2 #V2 #W2 #_ #_ #H destruct +qed-. + +lemma lsubr_inv_unit1: ∀I,K1,L2. K1.ⓤ{I} ⫃ L2 → + ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓤ{I}. +#I #K1 #L2 #H elim (lsubr_inv_bind1 … H) -H * +[ #K2 #HK12 #H destruct /2 width=3 by ex2_intro/ +| #K2 #V #W #_ #_ #H destruct +| #I1 #I2 #K2 #V #_ #_ #H destruct +] +qed-. + +lemma lsubr_inv_pair2: ∀I,L1,K2,W. L1 ⫃ K2.ⓑ{I}W → + ∨∨ ∃∃K1. K1 ⫃ K2 & L1 = K1.ⓑ{I}W + | ∃∃K1,V. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V & I = Abst. +#I #L1 #K2 #W #H elim (lsubr_inv_bind2 … H) -H * +[ /3 width=3 by ex2_intro, or_introl/ +| #K2 #X #V #HK12 #H1 #H2 destruct /3 width=4 by ex3_2_intro, or_intror/ +| #I1 #I1 #K2 #V #_ #_ #H destruct +] +qed-. + lemma lsubr_inv_abbr2: ∀L1,K2,V. L1 ⫃ K2.ⓓV → ∃∃K1. K1 ⫃ K2 & L1 = K1.ⓓV. #L1 #K2 #V #H elim (lsubr_inv_pair2 … H) -H * -[ #K1 #HK12 #H destruct /2 width=3 by ex2_intro/ -| #K1 #V1 #_ #_ #H destruct +[ /2 width=3 by ex2_intro/ +| #K1 #X #_ #_ #H destruct ] qed-. lemma lsubr_inv_abst2: ∀L1,K2,W. L1 ⫃ K2.ⓛW → - (∃∃K1. K1 ⫃ K2 & L1 = K1.ⓛW) ∨ - ∃∃K1,V. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V. + ∨∨ ∃∃K1. K1 ⫃ K2 & L1 = K1.ⓛW + | ∃∃K1,V. K1 ⫃ K2 & L1 = K1.ⓓⓝW.V. #L1 #K2 #W #H elim (lsubr_inv_pair2 … H) -H * -[ #K1 #HK12 #H destruct /3 width=3 by ex2_intro, or_introl/ -| #K1 #V1 #HK12 #H #_ destruct /3 width=4 by ex2_2_intro, or_intror/ +/3 width=4 by ex2_2_intro, ex2_intro, or_introl, or_intror/ +qed-. + +lemma lsubr_inv_unit2: ∀I,L1,K2. L1 ⫃ K2.ⓤ{I} → + ∨∨ ∃∃K1. K1 ⫃ K2 & L1 = K1.ⓤ{I} + | ∃∃J,K1,V. K1 ⫃ K2 & L1 = K1.ⓑ{J}V. +#I #L1 #K2 #H elim (lsubr_inv_bind2 … H) -H * +[ /3 width=3 by ex2_intro, or_introl/ +| #K1 #W #V #_ #_ #H destruct +| #I1 #I2 #K1 #V #HK12 #H1 #H2 destruct /3 width=5 by ex2_3_intro, or_intror/ ] qed-. (* Basic forward lemmas *****************************************************) -lemma lsubr_fwd_pair2: ∀I2,L1,K2,V2. L1 ⫃ K2.ⓑ{I2}V2 → - ∃∃I1,K1,V1. K1 ⫃ K2 & L1 = K1.ⓑ{I1}V1. -#I2 #L1 #K2 #V2 #H elim (lsubr_inv_pair2 … H) -H * -[ #K1 #HK12 #H destruct /3 width=5 by ex2_3_intro/ -| #K1 #V1 #HK12 #H1 #H2 destruct /3 width=5 by ex2_3_intro/ +lemma lsubr_fwd_bind1: ∀I1,K1,L2. K1.ⓘ{I1} ⫃ L2 → + ∃∃I2,K2. K1 ⫃ K2 & L2 = K2.ⓘ{I2}. +#I1 #K1 #L2 #H elim (lsubr_inv_bind1 … H) -H * +[ #K2 #HK12 #H destruct /3 width=4 by ex2_2_intro/ +| #K2 #W1 #V1 #HK12 #H1 #H2 destruct /3 width=4 by ex2_2_intro/ +| #I1 #I2 #K2 #V1 #HK12 #H1 #H2 destruct /3 width=4 by ex2_2_intro/ +] +qed-. + +lemma lsubr_fwd_bind2: ∀I2,L1,K2. L1 ⫃ K2.ⓘ{I2} → + ∃∃I1,K1. K1 ⫃ K2 & L1 = K1.ⓘ{I1}. +#I2 #L1 #K2 #H elim (lsubr_inv_bind2 … H) -H * +[ #K1 #HK12 #H destruct /3 width=4 by ex2_2_intro/ +| #K1 #W1 #V1 #HK12 #H1 #H2 destruct /3 width=4 by ex2_2_intro/ +| #I1 #I2 #K1 #V1 #HK12 #H1 #H2 destruct /3 width=4 by ex2_2_intro/ ] qed-.