X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Flib%2Farith.ma;h=dde95e8a7267d844ab844a0861e9ce1a044b480f;hp=2c6ad2a5623d947abd287fa3e1ceccddb880087b;hb=ff612dc35167ec0c145864c9aa8ae5e1ebe20a48;hpb=52616a7a6a550efd75ed56e7e246132453506002 diff --git a/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma b/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma index 2c6ad2a56..dde95e8a7 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma @@ -12,16 +12,16 @@ (* *) (**************************************************************************) -include "ground_2/notation/functions/successor_1.ma". -include "ground_2/notation/functions/predecessor_1.ma". +include "ground_2/notation/functions/uparrow_1.ma". +include "ground_2/notation/functions/downarrow_1.ma". include "arithmetics/nat.ma". -include "ground_2/lib/star.ma". +include "ground_2/lib/relations.ma". (* ARITHMETICAL PROPERTIES **************************************************) -interpretation "nat successor" 'Successor m = (S m). +interpretation "nat successor" 'UpArrow m = (S m). -interpretation "nat predecessor" 'Predecessor m = (pred m). +interpretation "nat predecessor" 'DownArrow m = (pred m). interpretation "nat min" 'and x y = (min x y). @@ -35,7 +35,7 @@ normalize // qed. lemma pred_S: ∀m. pred (S m) = m. // qed. -lemma plus_S1: ∀x,y. ⫯(x+y) = (⫯x) + y. +lemma plus_S1: ∀x,y. ↑(x+y) = (↑x) + y. // qed. lemma max_O1: ∀n. n = (0 ∨ n). @@ -44,14 +44,14 @@ lemma max_O1: ∀n. n = (0 ∨ n). lemma max_O2: ∀n. n = (n ∨ 0). // qed. -lemma max_SS: ∀n1,n2. ⫯(n1∨n2) = (⫯n1 ∨ ⫯n2). +lemma max_SS: ∀n1,n2. ↑(n1∨n2) = (↑n1 ∨ ↑n2). #n1 #n2 elim (decidable_le n1 n2) #H normalize [ >(le_to_leb_true … H) | >(not_le_to_leb_false … H) ] -H // qed. (* Equations ****************************************************************) -lemma plus_SO: ∀n. n + 1 = ⫯n. +lemma plus_SO: ∀n. n + 1 = ↑n. // qed. lemma minus_plus_m_m_commutative: ∀n,m:nat. n = m + n - m. @@ -62,6 +62,10 @@ lemma plus_minus_minus_be: ∀x,y,z. y ≤ z → z ≤ x → (x - z) + (z - y) = #x #z #y #Hzy #Hyx >plus_minus // >commutative_plus >plus_minus // qed-. +lemma lt_succ_pred: ∀m,n. n < m → m = ↑↓m. +#m #n #Hm >S_pred /2 width=2 by ltn_to_ltO/ +qed-. + fact plus_minus_minus_be_aux: ∀i,x,y,z. y ≤ z → z ≤ x → i = z - y → x - z + i = x - y. /2 width=1 by plus_minus_minus_be/ qed-. @@ -69,21 +73,21 @@ lemma plus_n_2: ∀n. n + 2 = n + 1 + 1. // qed. lemma le_plus_minus: ∀m,n,p. p ≤ n → m + n - p = m + (n - p). -/2 by plus_minus/ qed. +/2 by plus_minus/ qed-. lemma le_plus_minus_comm: ∀n,m,p. p ≤ m → m + n - p = m - p + n. -/2 by plus_minus/ qed. +/2 by plus_minus/ qed-. lemma minus_minus_comm3: ∀n,x,y,z. n-x-y-z = n-y-z-x. // qed. lemma arith_b1: ∀a,b,c1. c1 ≤ b → a - c1 - (b - c1) = a - b. #a #b #c1 #H >minus_minus_comm >minus_le_minus_minus_comm // -qed. +qed-. lemma arith_b2: ∀a,b,c1,c2. c1 + c2 ≤ b → a - c1 - c2 - (b - c1 - c2) = a - b. #a #b #c1 #c2 #H >minus_plus >minus_plus >minus_plus /2 width=1 by arith_b1/ -qed. +qed-. lemma arith_c1x: ∀x,a,b,c1. x + c1 + a - (b + c1) = x + a - b. /3 by monotonic_le_minus_l, le_to_le_to_eq, le_n/ qed. @@ -91,11 +95,15 @@ lemma arith_c1x: ∀x,a,b,c1. x + c1 + a - (b + c1) = x + a - b. lemma arith_h1: ∀a1,a2,b,c1. c1 ≤ a1 → c1 ≤ b → a1 - c1 + a2 - (b - c1) = a1 + a2 - b. #a1 #a2 #b #c1 #H1 #H2 >plus_minus /2 width=1 by arith_b2/ -qed. +qed-. lemma arith_i: ∀x,y,z. y < x → x+z-y-1 = x-y-1+z. /2 width=1 by plus_minus/ qed-. +lemma plus_to_minus_2: ∀m1,m2,n1,n2. n1 ≤ m1 → n2 ≤ m2 → + m1+n2 = m2+n1 → m1-n1 = m2-n2. +/2 width=1 by arith_b1/ qed-. + lemma idempotent_max: ∀n:nat. n = (n ∨ n). #n normalize >le_to_leb_true // qed. @@ -136,21 +144,21 @@ lemma monotonic_le_minus_l2: ∀x1,x2,y,z. x1 ≤ x2 → x1 - y - z ≤ x2 - y - /3 width=1 by monotonic_le_minus_l/ qed. (* Note: this might interfere with nat.ma *) -lemma monotonic_lt_pred: ∀m,n. m < n → O < m → pred m < pred n. +lemma monotonic_lt_pred: ∀m,n. m < n → 0 < m → pred m < pred n. #m #n #Hmn #Hm whd >(S_pred … Hm) @le_S_S_to_le >S_pred /2 width=3 by transitive_lt/ qed. -lemma lt_S_S: ∀x,y. x < y → ⫯x < ⫯y. +lemma lt_S_S: ∀x,y. x < y → ↑x < ↑y. /2 width=1 by le_S_S/ qed. -lemma lt_S: ∀n,m. n < m → n < ⫯m. +lemma lt_S: ∀n,m. n < m → n < ↑m. /2 width=1 by le_S/ qed. -lemma max_S1_le_S: ∀n1,n2,n. (n1 ∨ n2) ≤ n → (⫯n1 ∨ n2) ≤ ⫯n. +lemma max_S1_le_S: ∀n1,n2,n. (n1 ∨ n2) ≤ n → (↑n1 ∨ n2) ≤ ↑n. /4 width=2 by to_max, le_maxr, le_S_S, le_S/ qed-. -lemma max_S2_le_S: ∀n1,n2,n. (n1 ∨ n2) ≤ n → (n1 ∨ ⫯n2) ≤ ⫯n. +lemma max_S2_le_S: ∀n1,n2,n. (n1 ∨ n2) ≤ n → (n1 ∨ ↑n2) ≤ ↑n. /2 width=1 by max_S1_le_S/ qed-. lemma arith_j: ∀x,y,z. x-y-1 ≤ x-(y-z)-1. @@ -172,16 +180,39 @@ qed. (* Inversion & forward lemmas ***********************************************) -lemma nat_split: ∀x. x = 0 ∨ ∃y. ⫯y = x. -* /3 width=2 by ex_intro, or_introl, or_intror/ +lemma lt_refl_false: ∀n. n < n → ⊥. +#n #H elim (lt_to_not_eq … H) -H /2 width=1 by/ qed-. -lemma max_inv_O3: ∀x,y. (x ∨ y) = 0 → 0 = x ∧ 0 = y. -/4 width=2 by le_maxr, le_maxl, le_n_O_to_eq, conj/ +lemma lt_zero_false: ∀n. n < 0 → ⊥. +#n #H elim (lt_to_not_le … H) -H /2 width=1 by/ qed-. -lemma plus_inv_O3: ∀x,y. x + y = 0 → x = 0 ∧ y = 0. -/2 width=1 by plus_le_0/ qed-. +lemma lt_le_false: ∀x,y. x < y → y ≤ x → ⊥. +/3 width=4 by lt_refl_false, lt_to_le_to_lt/ qed-. + +lemma succ_inv_refl_sn: ∀x. ↑x = x → ⊥. +#x #H @(lt_le_false x (↑x)) // +qed-. + +lemma le_plus_xSy_O_false: ∀x,y. x + S y ≤ 0 → ⊥. +#x #y #H lapply (le_n_O_to_eq … H) -H H -H +/2 width=2 by le_plus_to_le/ qed-. -lemma lt_zero_false: ∀n. n < 0 → ⊥. -#n #H elim (lt_to_not_le … H) -H /2 width=1 by/ -qed-. - -lemma lt_le_false: ∀x,y. x < y → y ≤ x → ⊥. -/3 width=4 by lt_refl_false, lt_to_le_to_lt/ qed-. +lemma lt_S_S_to_lt: ∀x,y. ↑x < ↑y → x < y. +/2 width=1 by le_S_S_to_le/ qed-. -lemma succ_inv_refl_sn: ∀x. ⫯x = x → ⊥. -#x #H @(lt_le_false x (⫯x)) // +(* Note this should go in nat.ma *) +lemma discr_x_minus_xy: ∀x,y. x = x - y → x = 0 ∨ y = 0. +#x @(nat_ind_plus … x) -x /2 width=1 by or_introl/ +#x #_ #y @(nat_ind_plus … y) -y /2 width=1 by or_intror/ +#y #_ >minus_plus_plus_l +#H lapply (discr_plus_xy_minus_xz … H) -H +#H destruct qed-. -lemma lt_inv_O1: ∀n. 0 < n → ∃m. ⫯m = n. +lemma lt_inv_O1: ∀n. 0 < n → ∃m. ↑m = n. * /2 width=2 by ex_intro/ #H cases (lt_le_false … H) -H // qed-. -lemma lt_inv_S1: ∀m,n. ⫯m < n → ∃∃p. m < p & ⫯p = n. +lemma lt_inv_S1: ∀m,n. ↑m < n → ∃∃p. m < p & ↑p = n. #m * /3 width=3 by lt_S_S_to_lt, ex2_intro/ #H cases (lt_le_false … H) -H // qed-. -lemma lt_inv_gen: ∀y,x. x < y → ∃∃z. x ≤ z & ⫯z = y. +lemma lt_inv_gen: ∀y,x. x < y → ∃∃z. x ≤ z & ↑z = y. * /3 width=3 by le_S_S_to_le, ex2_intro/ #x #H elim (lt_le_false … H) -H // qed-. -lemma pred_inv_refl: ∀m. pred m = m → m = 0. -* // normalize #m #H elim (lt_refl_false m) // -qed-. +lemma plus_inv_O3: ∀x,y. x + y = 0 → x = 0 ∧ y = 0. +/2 width=1 by plus_le_0/ qed-. -lemma le_plus_xSy_O_false: ∀x,y. x + S y ≤ 0 → ⊥. -#x #y #H lapply (le_n_O_to_eq … H) -H minus_plus_plus_l -#H lapply (discr_plus_xy_minus_xz … H) -H -#H destruct +lemma max_inv_O3: ∀x,y. (x ∨ y) = 0 → 0 = x ∧ 0 = y. +/4 width=2 by le_maxr, le_maxl, le_n_O_to_eq, conj/ qed-. lemma zero_eq_plus: ∀x,y. 0 = x + y → 0 = x ∧ 0 = y. * /2 width=1 by conj/ #x #y normalize #H destruct qed-. -lemma lt_S_S_to_lt: ∀x,y. ⫯x < ⫯y → x < y. -/2 width=1 by le_S_S_to_le/ qed-. +lemma nat_split: ∀x. x = 0 ∨ ∃y. ↑y = x. +* /3 width=2 by ex_intro, or_introl, or_intror/ +qed-. lemma lt_elim: ∀R:relation nat. - (∀n2. R O (⫯n2)) → - (∀n1,n2. R n1 n2 → R (⫯n1) (⫯n2)) → + (∀n2. R O (↑n2)) → + (∀n1,n2. R n1 n2 → R (↑n1) (↑n2)) → ∀n2,n1. n1 < n2 → R n1 n2. #R #IH1 #IH2 #n2 elim n2 -n2 [ #n1 #H elim (lt_le_false … H) -H // @@ -269,7 +299,7 @@ qed-. lemma le_elim: ∀R:relation nat. (∀n2. R O (n2)) → - (∀n1,n2. R n1 n2 → R (⫯n1) (⫯n2)) → + (∀n1,n2. R n1 n2 → R (↑n1) (↑n2)) → ∀n1,n2. n1 ≤ n2 → R n1 n2. #R #IH1 #IH2 #n1 #n2 @(nat_elim2 … n1 n2) -n1 -n2 /4 width=1 by monotonic_pred/ -IH1 -IH2