X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fground_2%2Flib%2Farith.ma;h=dde95e8a7267d844ab844a0861e9ce1a044b480f;hp=832195fe90efcf4e404c39af1e6ed4f37eabd5ac;hb=ff612dc35167ec0c145864c9aa8ae5e1ebe20a48;hpb=d95bd78c09617ad212fa9e96837a15fc907dcfca diff --git a/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma b/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma index 832195fe9..dde95e8a7 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/lib/arith.ma @@ -12,52 +12,155 @@ (* *) (**************************************************************************) +include "ground_2/notation/functions/uparrow_1.ma". +include "ground_2/notation/functions/downarrow_1.ma". include "arithmetics/nat.ma". -include "ground_2/lib/star.ma". +include "ground_2/lib/relations.ma". (* ARITHMETICAL PROPERTIES **************************************************) +interpretation "nat successor" 'UpArrow m = (S m). + +interpretation "nat predecessor" 'DownArrow m = (pred m). + +interpretation "nat min" 'and x y = (min x y). + +interpretation "nat max" 'or x y = (max x y). + +(* Iota equations ***********************************************************) + +lemma pred_O: pred 0 = 0. +normalize // qed. + +lemma pred_S: ∀m. pred (S m) = m. +// qed. + +lemma plus_S1: ∀x,y. ↑(x+y) = (↑x) + y. +// qed. + +lemma max_O1: ∀n. n = (0 ∨ n). +// qed. + +lemma max_O2: ∀n. n = (n ∨ 0). +// qed. + +lemma max_SS: ∀n1,n2. ↑(n1∨n2) = (↑n1 ∨ ↑n2). +#n1 #n2 elim (decidable_le n1 n2) #H normalize +[ >(le_to_leb_true … H) | >(not_le_to_leb_false … H) ] -H // +qed. + (* Equations ****************************************************************) +lemma plus_SO: ∀n. n + 1 = ↑n. +// qed. + +lemma minus_plus_m_m_commutative: ∀n,m:nat. n = m + n - m. +// qed-. + +(* Note: uses minus_minus_comm, minus_plus_m_m, commutative_plus, plus_minus *) +lemma plus_minus_minus_be: ∀x,y,z. y ≤ z → z ≤ x → (x - z) + (z - y) = x - y. +#x #z #y #Hzy #Hyx >plus_minus // >commutative_plus >plus_minus // +qed-. + +lemma lt_succ_pred: ∀m,n. n < m → m = ↑↓m. +#m #n #Hm >S_pred /2 width=2 by ltn_to_ltO/ +qed-. + +fact plus_minus_minus_be_aux: ∀i,x,y,z. y ≤ z → z ≤ x → i = z - y → x - z + i = x - y. +/2 width=1 by plus_minus_minus_be/ qed-. + lemma plus_n_2: ∀n. n + 2 = n + 1 + 1. // qed. lemma le_plus_minus: ∀m,n,p. p ≤ n → m + n - p = m + (n - p). -/2 by plus_minus/ qed. +/2 by plus_minus/ qed-. lemma le_plus_minus_comm: ∀n,m,p. p ≤ m → m + n - p = m - p + n. -/2 by plus_minus/ qed. +/2 by plus_minus/ qed-. lemma minus_minus_comm3: ∀n,x,y,z. n-x-y-z = n-y-z-x. // qed. lemma arith_b1: ∀a,b,c1. c1 ≤ b → a - c1 - (b - c1) = a - b. #a #b #c1 #H >minus_minus_comm >minus_le_minus_minus_comm // -qed. +qed-. lemma arith_b2: ∀a,b,c1,c2. c1 + c2 ≤ b → a - c1 - c2 - (b - c1 - c2) = a - b. -#a #b #c1 #c2 #H >minus_plus >minus_plus >minus_plus /2 width=1/ -qed. +#a #b #c1 #c2 #H >minus_plus >minus_plus >minus_plus /2 width=1 by arith_b1/ +qed-. lemma arith_c1x: ∀x,a,b,c1. x + c1 + a - (b + c1) = x + a - b. /3 by monotonic_le_minus_l, le_to_le_to_eq, le_n/ qed. lemma arith_h1: ∀a1,a2,b,c1. c1 ≤ a1 → c1 ≤ b → a1 - c1 + a2 - (b - c1) = a1 + a2 - b. -#a1 #a2 #b #c1 #H1 #H2 >plus_minus // /2 width=1/ -qed. +#a1 #a2 #b #c1 #H1 #H2 >plus_minus /2 width=1 by arith_b2/ +qed-. lemma arith_i: ∀x,y,z. y < x → x+z-y-1 = x-y-1+z. /2 width=1 by plus_minus/ qed-. +lemma plus_to_minus_2: ∀m1,m2,n1,n2. n1 ≤ m1 → n2 ≤ m2 → + m1+n2 = m2+n1 → m1-n1 = m2-n2. +/2 width=1 by arith_b1/ qed-. + +lemma idempotent_max: ∀n:nat. n = (n ∨ n). +#n normalize >le_to_leb_true // +qed. + +lemma associative_max: associative … max. +#x #y #z normalize +@(leb_elim x y) normalize #Hxy +@(leb_elim y z) normalize #Hyz // +[1,2: >le_to_leb_true /2 width=3 by transitive_le/ +| >not_le_to_leb_false /4 width=3 by lt_to_not_le, not_le_to_lt, transitive_lt/ + >not_le_to_leb_false // +] +qed. + (* Properties ***************************************************************) -fact le_repl_sn_aux: ∀x,y,z:nat. x ≤ z → x = y → y ≤ z. +lemma eq_nat_dec: ∀n1,n2:nat. Decidable (n1 = n2). +#n1 elim n1 -n1 [| #n1 #IHn1 ] * [2,4: #n2 ] +[1,4: @or_intror #H destruct +| elim (IHn1 n2) -IHn1 /3 width=1 by or_intror, or_introl/ +| /2 width=1 by or_introl/ +] +qed-. + +lemma lt_or_eq_or_gt: ∀m,n. ∨∨ m < n | n = m | n < m. +#m #n elim (lt_or_ge m n) /2 width=1 by or3_intro0/ +#H elim H -m /2 width=1 by or3_intro1/ +#m #Hm * /3 width=1 by not_le_to_lt, le_S_S, or3_intro2/ +qed-. + +fact le_repl_sn_conf_aux: ∀x,y,z:nat. x ≤ z → x = y → y ≤ z. +// qed-. + +fact le_repl_sn_trans_aux: ∀x,y,z:nat. x ≤ z → y = x → y ≤ z. // qed-. lemma monotonic_le_minus_l2: ∀x1,x2,y,z. x1 ≤ x2 → x1 - y - z ≤ x2 - y - z. /3 width=1 by monotonic_le_minus_l/ qed. +(* Note: this might interfere with nat.ma *) +lemma monotonic_lt_pred: ∀m,n. m < n → 0 < m → pred m < pred n. +#m #n #Hmn #Hm whd >(S_pred … Hm) +@le_S_S_to_le >S_pred /2 width=3 by transitive_lt/ +qed. + +lemma lt_S_S: ∀x,y. x < y → ↑x < ↑y. +/2 width=1 by le_S_S/ qed. + +lemma lt_S: ∀n,m. n < m → n < ↑m. +/2 width=1 by le_S/ qed. + +lemma max_S1_le_S: ∀n1,n2,n. (n1 ∨ n2) ≤ n → (↑n1 ∨ n2) ≤ ↑n. +/4 width=2 by to_max, le_maxr, le_S_S, le_S/ qed-. + +lemma max_S2_le_S: ∀n1,n2,n. (n1 ∨ n2) ≤ n → (n1 ∨ ↑n2) ≤ ↑n. +/2 width=1 by max_S1_le_S/ qed-. + lemma arith_j: ∀x,y,z. x-y-1 ≤ x-(y-z)-1. /3 width=1 by monotonic_le_minus_l, monotonic_le_minus_r/ qed. @@ -77,39 +180,28 @@ qed. (* Inversion & forward lemmas ***********************************************) -axiom eq_nat_dec: ∀n1,n2:nat. Decidable (n1 = n2). - -axiom lt_dec: ∀n1,n2. Decidable (n1 < n2). - -lemma lt_or_eq_or_gt: ∀m,n. ∨∨ m < n | n = m | n < m. -#m #n elim (lt_or_ge m n) /2 width=1/ -#H elim H -m /2 width=1/ -#m #Hm * #H /2 width=1/ /3 width=1/ -qed-. - lemma lt_refl_false: ∀n. n < n → ⊥. -#n #H elim (lt_to_not_eq … H) -H /2 width=1/ +#n #H elim (lt_to_not_eq … H) -H /2 width=1 by/ qed-. lemma lt_zero_false: ∀n. n < 0 → ⊥. -#n #H elim (lt_to_not_le … H) -H /2 width=1/ +#n #H elim (lt_to_not_le … H) -H /2 width=1 by/ qed-. -lemma false_lt_to_le: ∀x,y. (x < y → ⊥) → y ≤ x. -#x #y #H elim (decidable_lt x y) /2 width=1/ -#Hxy elim (H Hxy) +lemma lt_le_false: ∀x,y. x < y → y ≤ x → ⊥. +/3 width=4 by lt_refl_false, lt_to_le_to_lt/ qed-. + +lemma succ_inv_refl_sn: ∀x. ↑x = x → ⊥. +#x #H @(lt_le_false x (↑x)) // qed-. -lemma pred_inv_refl: ∀m. pred m = m → m = 0. -* // normalize #m #H elim (lt_refl_false m) // +lemma le_plus_xSy_O_false: ∀x,y. x + S y ≤ 0 → ⊥. +#x #y #H lapply (le_n_O_to_eq … H) -H H -H +/2 width=2 by le_plus_to_le/ +qed-. + +lemma lt_S_S_to_lt: ∀x,y. ↑x < ↑y → x < y. +/2 width=1 by le_S_S_to_le/ qed-. + +(* Note this should go in nat.ma *) +lemma discr_x_minus_xy: ∀x,y. x = x - y → x = 0 ∨ y = 0. +#x @(nat_ind_plus … x) -x /2 width=1 by or_introl/ +#x #_ #y @(nat_ind_plus … y) -y /2 width=1 by or_intror/ +#y #_ >minus_plus_plus_l +#H lapply (discr_plus_xy_minus_xz … H) -H +#H destruct +qed-. + +lemma lt_inv_O1: ∀n. 0 < n → ∃m. ↑m = n. +* /2 width=2 by ex_intro/ +#H cases (lt_le_false … H) -H // +qed-. + +lemma lt_inv_S1: ∀m,n. ↑m < n → ∃∃p. m < p & ↑p = n. +#m * /3 width=3 by lt_S_S_to_lt, ex2_intro/ +#H cases (lt_le_false … H) -H // +qed-. + +lemma lt_inv_gen: ∀y,x. x < y → ∃∃z. x ≤ z & ↑z = y. +* /3 width=3 by le_S_S_to_le, ex2_intro/ +#x #H elim (lt_le_false … H) -H // +qed-. + +lemma plus_inv_O3: ∀x,y. x + y = 0 → x = 0 ∧ y = 0. +/2 width=1 by plus_le_0/ qed-. + +lemma plus_inv_S3_sn: ∀x1,x2,x3. x1+x2 = ↑x3 → + ∨∨ ∧∧ x1 = 0 & x2 = ↑x3 + | ∃∃y1. x1 = ↑y1 & y1 + x2 = x3. +* /3 width=1 by or_introl, conj/ +#x1 #x2 #x3 commutative_plus // qed. @@ -144,7 +338,7 @@ qed. (* Trichotomy operator ******************************************************) (* Note: this is "if eqb n1 n2 then a2 else if leb n1 n2 then a1 else a3" *) -let rec tri (A:Type[0]) n1 n2 a1 a2 a3 on n1 : A ≝ +rec definition tri (A:Type[0]) n1 n2 a1 a2 a3 on n1 : A ≝ match n1 with [ O ⇒ match n2 with [ O ⇒ a2 | S n2 ⇒ a1 ] | S n1 ⇒ match n2 with [ O ⇒ a3 | S n2 ⇒ tri A n1 n2 a1 a2 a3 ] @@ -153,7 +347,7 @@ let rec tri (A:Type[0]) n1 n2 a1 a2 a3 on n1 : A ≝ lemma tri_lt: ∀A,a1,a2,a3,n2,n1. n1 < n2 → tri A n1 n2 a1 a2 a3 = a1. #A #a1 #a2 #a3 #n2 elim n2 -n2 [ #n1 #H elim (lt_zero_false … H) -| #n2 #IH #n1 elim n1 -n1 // /3 width=1/ +| #n2 #IH #n1 elim n1 -n1 /3 width=1 by monotonic_lt_pred/ ] qed. @@ -164,6 +358,6 @@ qed. lemma tri_gt: ∀A,a1,a2,a3,n1,n2. n2 < n1 → tri A n1 n2 a1 a2 a3 = a3. #A #a1 #a2 #a3 #n1 elim n1 -n1 [ #n2 #H elim (lt_zero_false … H) -| #n1 #IH #n2 elim n2 -n2 // /3 width=1/ +| #n1 #IH #n2 elim n2 -n2 /3 width=1 by monotonic_lt_pred/ ] qed.