X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fstatic_2%2Frelocation%2Flifts.ma;h=2a50e45de7a6bbae705a3db5c8ce717d764f5dc8;hp=6bdf97c003ff721ef0e1d857ab940999111d9168;hb=25c634037771dff0138e5e8e3d4378183ff49b86;hpb=bd53c4e895203eb049e75434f638f26b5a161a2b diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma index 6bdf97c00..2a50e45de 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma @@ -14,6 +14,7 @@ include "ground_2/relocation/nstream_after.ma". include "static_2/notation/relations/rliftstar_3.ma". +include "static_2/notation/relations/rlift_3.ma". include "static_2/syntax/term.ma". (* GENERIC RELOCATION FOR TERMS *********************************************) @@ -34,12 +35,12 @@ inductive lifts: rtmap → relation term ≝ lifts f (ⓕ[I]V1.T1) (ⓕ[I]V2.T2) . -interpretation "uniform relocation (term)" - 'RLiftStar i T1 T2 = (lifts (uni i) T1 T2). - interpretation "generic relocation (term)" 'RLiftStar f T1 T2 = (lifts f T1 T2). +interpretation "uniform relocation (term)" + 'RLift i T1 T2 = (lifts (uni i) T1 T2). + definition liftable2_sn: predicate (relation term) ≝ λR. ∀T1,T2. R T1 T2 → ∀f,U1. ⇧*[f] T1 ≘ U1 → ∃∃U2. ⇧*[f] T2 ≘ U2 & R U1 U2. @@ -128,7 +129,7 @@ lemma lifts_inv_bind1: ∀f,p,I,V1,T1,Y. ⇧*[f] ⓑ[p,I]V1.T1 ≘ Y → Y = ⓑ[p,I]V2.T2. /2 width=3 by lifts_inv_bind1_aux/ qed-. -fact lifts_inv_flat1_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → +fact lifts_inv_flat1_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀I,V1,T1. X = ⓕ[I]V1.T1 → ∃∃V2,T2. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & Y = ⓕ[I]V2.T2. @@ -143,7 +144,7 @@ qed-. (* Basic_1: was: lift1_flat *) (* Basic_2A1: includes: lift_inv_flat1 *) -lemma lifts_inv_flat1: ∀f:rtmap. ∀I,V1,T1,Y. ⇧*[f] ⓕ[I]V1.T1 ≘ Y → +lemma lifts_inv_flat1: ∀f,I,V1,T1,Y. ⇧*[f] ⓕ[I]V1.T1 ≘ Y → ∃∃V2,T2. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & Y = ⓕ[I]V2.T2. /2 width=3 by lifts_inv_flat1_aux/ qed-. @@ -210,7 +211,7 @@ lemma lifts_inv_bind2: ∀f,p,I,V2,T2,X. ⇧*[f] X ≘ ⓑ[p,I]V2.T2 → X = ⓑ[p,I]V1.T1. /2 width=3 by lifts_inv_bind2_aux/ qed-. -fact lifts_inv_flat2_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → +fact lifts_inv_flat2_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀I,V2,T2. Y = ⓕ[I]V2.T2 → ∃∃V1,T1. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & X = ⓕ[I]V1.T1. @@ -225,7 +226,7 @@ qed-. (* Basic_1: includes: lift_gen_flat *) (* Basic_2A1: includes: lift_inv_flat2 *) -lemma lifts_inv_flat2: ∀f:rtmap. ∀I,V2,T2,X. ⇧*[f] X ≘ ⓕ[I]V2.T2 → +lemma lifts_inv_flat2: ∀f,I,V2,T2,X. ⇧*[f] X ≘ ⓕ[I]V2.T2 → ∃∃V1,T1. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & X = ⓕ[I]V1.T1. /2 width=3 by lifts_inv_flat2_aux/ qed-. @@ -305,22 +306,22 @@ qed-. (* Inversion lemmas with uniform relocations ********************************) -lemma lifts_inv_lref1_uni: ∀l,Y,i. ⇧*[l] #i ≘ Y → Y = #(l+i). +lemma lifts_inv_lref1_uni: ∀l,Y,i. ⇧[l] #i ≘ Y → Y = #(l+i). #l #Y #i1 #H elim (lifts_inv_lref1 … H) -H /4 width=4 by at_mono, eq_f/ qed-. -lemma lifts_inv_lref2_uni: ∀l,X,i2. ⇧*[l] X ≘ #i2 → +lemma lifts_inv_lref2_uni: ∀l,X,i2. ⇧[l] X ≘ #i2 → ∃∃i1. X = #i1 & i2 = l + i1. #l #X #i2 #H elim (lifts_inv_lref2 … H) -H /3 width=3 by at_inv_uni, ex2_intro/ qed-. -lemma lifts_inv_lref2_uni_ge: ∀l,X,i. ⇧*[l] X ≘ #(l + i) → X = #i. +lemma lifts_inv_lref2_uni_ge: ∀l,X,i. ⇧[l] X ≘ #(l + i) → X = #i. #l #X #i2 #H elim (lifts_inv_lref2_uni … H) -H #i1 #H1 #H2 destruct /4 width=2 by injective_plus_r, eq_f, sym_eq/ qed-. -lemma lifts_inv_lref2_uni_lt: ∀l,X,i. ⇧*[l] X ≘ #i → i < l → ⊥. +lemma lifts_inv_lref2_uni_lt: ∀l,X,i. ⇧[l] X ≘ #i → i < l → ⊥. #l #X #i2 #H elim (lifts_inv_lref2_uni … H) -H #i1 #_ #H1 #H2 destruct /2 width=4 by lt_le_false/ qed-. @@ -334,7 +335,7 @@ lemma lifts_fwd_isid: ∀f,T1,T2. ⇧*[f] T1 ≘ T2 → 𝐈❪f❫ → T1 = T2. qed-. (* Basic_2A1: includes: lift_fwd_pair1 *) -lemma lifts_fwd_pair1: ∀f:rtmap. ∀I,V1,T1,Y. ⇧*[f] ②[I]V1.T1 ≘ Y → +lemma lifts_fwd_pair1: ∀f,I,V1,T1,Y. ⇧*[f] ②[I]V1.T1 ≘ Y → ∃∃V2,T2. ⇧*[f] V1 ≘ V2 & Y = ②[I]V2.T2. #f * [ #p ] #I #V1 #T1 #Y #H [ elim (lifts_inv_bind1 … H) -H /2 width=4 by ex2_2_intro/ @@ -343,7 +344,7 @@ lemma lifts_fwd_pair1: ∀f:rtmap. ∀I,V1,T1,Y. ⇧*[f] ②[I]V1.T1 ≘ Y → qed-. (* Basic_2A1: includes: lift_fwd_pair2 *) -lemma lifts_fwd_pair2: ∀f:rtmap. ∀I,V2,T2,X. ⇧*[f] X ≘ ②[I]V2.T2 → +lemma lifts_fwd_pair2: ∀f,I,V2,T2,X. ⇧*[f] X ≘ ②[I]V2.T2 → ∃∃V1,T1. ⇧*[f] V1 ≘ V2 & X = ②[I]V1.T1. #f * [ #p ] #I #V2 #T2 #X #H [ elim (lifts_inv_bind2 … H) -H /2 width=4 by ex2_2_intro/ @@ -399,7 +400,7 @@ elim (lifts_inv_lref1 … H) -H #j #Hij #H destruct /3 width=7 by lifts_lref, at_push/ qed. -lemma lifts_lref_uni: ∀l,i. ⇧*[l] #i ≘ #(l+i). +lemma lifts_lref_uni: ∀l,i. ⇧[l] #i ≘ #(l+i). #l elim l -l /2 width=1 by lifts_lref/ qed. @@ -476,7 +477,7 @@ qed-. (* Properties with uniform relocation ***************************************) -lemma lifts_uni: ∀n1,n2,T,U. ⇧*[𝐔❨n1❩∘𝐔❨n2❩] T ≘ U → ⇧*[n1+n2] T ≘ U. +lemma lifts_uni: ∀n1,n2,T,U. ⇧*[𝐔❨n1❩∘𝐔❨n2❩] T ≘ U → ⇧[n1+n2] T ≘ U. /3 width=4 by lifts_eq_repl_back, after_inv_total/ qed. (* Basic_2A1: removed theorems 14: