X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fstatic_2%2Frelocation%2Fseq.ma;h=f928bda7c0bd5e899ff0698df0cf15c5bda060dc;hp=60830fa46b9772a30102d5afa67f777ea035da24;hb=b118146b97959e6a6dde18fdd014b8e1e676a2d1;hpb=613d8642b1154dde0c026cbdcd96568910198251 diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/seq.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/seq.ma index 60830fa46..f928bda7c 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/seq.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/seq.ma @@ -13,13 +13,14 @@ (**************************************************************************) include "static_2/notation/relations/ideqsn_3.ma". -include "static_2/syntax/ceq_ext.ma". +include "static_2/syntax/teq_ext.ma". include "static_2/relocation/sex.ma". (* SYNTACTIC EQUIVALENCE FOR SELECTED LOCAL ENVIRONMENTS ********************) (* Basic_2A1: includes: lreq_atom lreq_zero lreq_pair lreq_succ *) -definition seq: relation3 rtmap lenv lenv ≝ sex ceq_ext cfull. +definition seq: relation3 rtmap lenv lenv ≝ + sex ceq_ext cfull. interpretation "syntactic equivalence on selected entries (local environment)" @@ -27,75 +28,89 @@ interpretation (* Basic properties *********************************************************) -lemma seq_eq_repl_back: ∀L1,L2. eq_repl_back … (λf. L1 ≡[f] L2). +lemma seq_eq_repl_back: + ∀L1,L2. eq_repl_back … (λf. L1 ≡[f] L2). /2 width=3 by sex_eq_repl_back/ qed-. -lemma seq_eq_repl_fwd: ∀L1,L2. eq_repl_fwd … (λf. L1 ≡[f] L2). +lemma seq_eq_repl_fwd: + ∀L1,L2. eq_repl_fwd … (λf. L1 ≡[f] L2). /2 width=3 by sex_eq_repl_fwd/ qed-. -lemma sle_seq_trans: ∀f2,L1,L2. L1 ≡[f2] L2 → - ∀f1. f1 ⊆ f2 → L1 ≡[f1] L2. +lemma sle_seq_trans: + ∀f2,L1,L2. L1 ≡[f2] L2 → + ∀f1. f1 ⊆ f2 → L1 ≡[f1] L2. /2 width=3 by sle_sex_trans/ qed-. (* Basic_2A1: includes: lreq_refl *) -lemma seq_refl: ∀f. reflexive … (seq f). +lemma seq_refl (f): + reflexive … (seq f). /2 width=1 by sex_refl/ qed. (* Basic_2A1: includes: lreq_sym *) -lemma seq_sym: ∀f. symmetric … (seq f). -/3 width=2 by sex_sym, cext2_sym/ qed-. +lemma seq_sym (f): + symmetric … (seq f). +/3 width=1 by sex_sym, ceq_ext_sym/ qed-. (* Basic inversion lemmas ***************************************************) (* Basic_2A1: includes: lreq_inv_atom1 *) -lemma seq_inv_atom1: ∀f,Y. ⋆ ≡[f] Y → Y = ⋆. +lemma seq_inv_atom1 (f): + ∀Y. ⋆ ≡[f] Y → Y = ⋆. /2 width=4 by sex_inv_atom1/ qed-. (* Basic_2A1: includes: lreq_inv_pair1 *) -lemma seq_inv_next1: ∀g,J,K1,Y. K1.ⓘ[J] ≡[↑g] Y → - ∃∃K2. K1 ≡[g] K2 & Y = K2.ⓘ[J]. +lemma seq_inv_next1 (g): + ∀J,K1,Y. K1.ⓘ[J] ≡[↑g] Y → + ∃∃K2. K1 ≡[g] K2 & Y = K2.ⓘ[J]. #g #J #K1 #Y #H elim (sex_inv_next1 … H) -H #Z #K2 #HK12 #H1 #H2 destruct <(ceq_ext_inv_eq … H1) -Z /2 width=3 by ex2_intro/ qed-. (* Basic_2A1: includes: lreq_inv_zero1 lreq_inv_succ1 *) -lemma seq_inv_push1: ∀g,J1,K1,Y. K1.ⓘ[J1] ≡[⫯g] Y → - ∃∃J2,K2. K1 ≡[g] K2 & Y = K2.ⓘ[J2]. +lemma seq_inv_push1 (g): + ∀J1,K1,Y. K1.ⓘ[J1] ≡[⫯g] Y → + ∃∃J2,K2. K1 ≡[g] K2 & Y = K2.ⓘ[J2]. #g #J1 #K1 #Y #H elim (sex_inv_push1 … H) -H /2 width=4 by ex2_2_intro/ qed-. (* Basic_2A1: includes: lreq_inv_atom2 *) -lemma seq_inv_atom2: ∀f,X. X ≡[f] ⋆ → X = ⋆. +lemma seq_inv_atom2 (f): + ∀X. X ≡[f] ⋆ → X = ⋆. /2 width=4 by sex_inv_atom2/ qed-. (* Basic_2A1: includes: lreq_inv_pair2 *) -lemma seq_inv_next2: ∀g,J,X,K2. X ≡[↑g] K2.ⓘ[J] → - ∃∃K1. K1 ≡[g] K2 & X = K1.ⓘ[J]. +lemma seq_inv_next2 (g): + ∀J,X,K2. X ≡[↑g] K2.ⓘ[J] → + ∃∃K1. K1 ≡[g] K2 & X = K1.ⓘ[J]. #g #J #X #K2 #H elim (sex_inv_next2 … H) -H #Z #K1 #HK12 #H1 #H2 destruct <(ceq_ext_inv_eq … H1) -J /2 width=3 by ex2_intro/ qed-. (* Basic_2A1: includes: lreq_inv_zero2 lreq_inv_succ2 *) -lemma seq_inv_push2: ∀g,J2,X,K2. X ≡[⫯g] K2.ⓘ[J2] → - ∃∃J1,K1. K1 ≡[g] K2 & X = K1.ⓘ[J1]. +lemma seq_inv_push2 (g): + ∀J2,X,K2. X ≡[⫯g] K2.ⓘ[J2] → + ∃∃J1,K1. K1 ≡[g] K2 & X = K1.ⓘ[J1]. #g #J2 #X #K2 #H elim (sex_inv_push2 … H) -H /2 width=4 by ex2_2_intro/ qed-. (* Basic_2A1: includes: lreq_inv_pair *) -lemma seq_inv_next: ∀f,I1,I2,L1,L2. L1.ⓘ[I1] ≡[↑f] L2.ⓘ[I2] → - ∧∧ L1 ≡[f] L2 & I1 = I2. +lemma seq_inv_next (f): + ∀I1,I2,L1,L2. L1.ⓘ[I1] ≡[↑f] L2.ⓘ[I2] → + ∧∧ L1 ≡[f] L2 & I1 = I2. #f #I1 #I2 #L1 #L2 #H elim (sex_inv_next … H) -H /3 width=3 by ceq_ext_inv_eq, conj/ qed-. (* Basic_2A1: includes: lreq_inv_succ *) -lemma seq_inv_push: ∀f,I1,I2,L1,L2. L1.ⓘ[I1] ≡[⫯f] L2.ⓘ[I2] → L1 ≡[f] L2. +lemma seq_inv_push (f): + ∀I1,I2,L1,L2. L1.ⓘ[I1] ≡[⫯f] L2.ⓘ[I2] → L1 ≡[f] L2. #f #I1 #I2 #L1 #L2 #H elim (sex_inv_push … H) -H /2 width=1 by conj/ qed-. -lemma seq_inv_tl: ∀f,I,L1,L2. L1 ≡[⫱f] L2 → L1.ⓘ[I] ≡[f] L2.ⓘ[I]. +lemma seq_inv_tl (f): + ∀I,L1,L2. L1 ≡[⫱f] L2 → L1.ⓘ[I] ≡[f] L2.ⓘ[I]. /2 width=1 by sex_inv_tl/ qed-. (* Basic_2A1: removed theorems 5: