X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fstatic_2%2Frelocation%2Fsex.ma;h=6247b8686c3b92c04ea24ab3b1a33ed24bbc3ca3;hp=df09463c8085877bc9bdd7fc0c7ae95dcc99a1d9;hb=f308429a0fde273605a2330efc63268b4ac36c99;hpb=87f57ddc367303c33e19c83cd8989cd561f3185b diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/sex.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/sex.ma index df09463c8..6247b8686 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/sex.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/sex.ma @@ -38,7 +38,7 @@ definition R_pw_confluent2_sex: relation3 lenv bind bind → relation3 lenv bind relation3 rtmap lenv bind ≝ λR1,R2,RN1,RP1,RN2,RP2,f,L0,I0. ∀I1. R1 L0 I0 I1 → ∀I2. R2 L0 I0 I2 → - ∀L1. L0 ⪤[RN1, RP1, f] L1 → ∀L2. L0 ⪤[RN2, RP2, f] L2 → + ∀L1. L0 ⪤[RN1,RP1,f] L1 → ∀L2. L0 ⪤[RN2,RP2,f] L2 → ∃∃I. R2 L1 I1 I & R1 L2 I2 I. definition sex_transitive: relation3 lenv bind bind → relation3 lenv bind bind → @@ -46,22 +46,22 @@ definition sex_transitive: relation3 lenv bind bind → relation3 lenv bind bind relation3 lenv bind bind → relation3 lenv bind bind → relation3 rtmap lenv bind ≝ λR1,R2,R3,RN,RP,f,L1,I1. - ∀I. R1 L1 I1 I → ∀L2. L1 ⪤[RN, RP, f] L2 → + ∀I. R1 L1 I1 I → ∀L2. L1 ⪤[RN,RP,f] L2 → ∀I2. R2 L2 I I2 → R3 L1 I1 I2. (* Basic inversion lemmas ***************************************************) -fact sex_inv_atom1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → X = ⋆ → Y = ⋆. +fact sex_inv_atom1_aux: ∀RN,RP,f,X,Y. X ⪤[RN,RP,f] Y → X = ⋆ → Y = ⋆. #RN #RP #f #X #Y * -f -X -Y // #f #I1 #I2 #L1 #L2 #_ #_ #H destruct qed-. (* Basic_2A1: includes lpx_sn_inv_atom1 *) -lemma sex_inv_atom1: ∀RN,RP,f,Y. ⋆ ⪤[RN, RP, f] Y → Y = ⋆. +lemma sex_inv_atom1: ∀RN,RP,f,Y. ⋆ ⪤[RN,RP,f] Y → Y = ⋆. /2 width=6 by sex_inv_atom1_aux/ qed-. -fact sex_inv_next1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J1,K1. X = K1.ⓘ{J1} → f = ↑g → - ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & Y = K2.ⓘ{J2}. +fact sex_inv_next1_aux: ∀RN,RP,f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J1,K1. X = K1.ⓘ{J1} → f = ↑g → + ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & Y = K2.ⓘ{J2}. #RN #RP #f #X #Y * -f -X -Y [ #f #g #J1 #K1 #H destruct | #f #I1 #I2 #L1 #L2 #HL #HI #g #J1 #K1 #H1 #H2 <(injective_next … H2) -g destruct @@ -71,12 +71,12 @@ fact sex_inv_next1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J1,K1. X = K qed-. (* Basic_2A1: includes lpx_sn_inv_pair1 *) -lemma sex_inv_next1: ∀RN,RP,g,J1,K1,Y. K1.ⓘ{J1} ⪤[RN, RP, ↑g] Y → - ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & Y = K2.ⓘ{J2}. +lemma sex_inv_next1: ∀RN,RP,g,J1,K1,Y. K1.ⓘ{J1} ⪤[RN,RP,↑g] Y → + ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & Y = K2.ⓘ{J2}. /2 width=7 by sex_inv_next1_aux/ qed-. -fact sex_inv_push1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J1,K1. X = K1.ⓘ{J1} → f = ⫯g → - ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & Y = K2.ⓘ{J2}. +fact sex_inv_push1_aux: ∀RN,RP,f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J1,K1. X = K1.ⓘ{J1} → f = ⫯g → + ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & Y = K2.ⓘ{J2}. #RN #RP #f #X #Y * -f -X -Y [ #f #g #J1 #K1 #H destruct | #f #I1 #I2 #L1 #L2 #_ #_ #g #J1 #K1 #_ #H elim (discr_next_push … H) @@ -85,21 +85,21 @@ fact sex_inv_push1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J1,K1. X = K ] qed-. -lemma sex_inv_push1: ∀RN,RP,g,J1,K1,Y. K1.ⓘ{J1} ⪤[RN, RP, ⫯g] Y → - ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & Y = K2.ⓘ{J2}. +lemma sex_inv_push1: ∀RN,RP,g,J1,K1,Y. K1.ⓘ{J1} ⪤[RN,RP,⫯g] Y → + ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & Y = K2.ⓘ{J2}. /2 width=7 by sex_inv_push1_aux/ qed-. -fact sex_inv_atom2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → Y = ⋆ → X = ⋆. +fact sex_inv_atom2_aux: ∀RN,RP,f,X,Y. X ⪤[RN,RP,f] Y → Y = ⋆ → X = ⋆. #RN #RP #f #X #Y * -f -X -Y // #f #I1 #I2 #L1 #L2 #_ #_ #H destruct qed-. (* Basic_2A1: includes lpx_sn_inv_atom2 *) -lemma sex_inv_atom2: ∀RN,RP,f,X. X ⪤[RN, RP, f] ⋆ → X = ⋆. +lemma sex_inv_atom2: ∀RN,RP,f,X. X ⪤[RN,RP,f] ⋆ → X = ⋆. /2 width=6 by sex_inv_atom2_aux/ qed-. -fact sex_inv_next2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J2,K2. Y = K2.ⓘ{J2} → f = ↑g → - ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & X = K1.ⓘ{J1}. +fact sex_inv_next2_aux: ∀RN,RP,f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J2,K2. Y = K2.ⓘ{J2} → f = ↑g → + ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & X = K1.ⓘ{J1}. #RN #RP #f #X #Y * -f -X -Y [ #f #g #J2 #K2 #H destruct | #f #I1 #I2 #L1 #L2 #HL #HI #g #J2 #K2 #H1 #H2 <(injective_next … H2) -g destruct @@ -109,12 +109,12 @@ fact sex_inv_next2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J2,K2. Y = K qed-. (* Basic_2A1: includes lpx_sn_inv_pair2 *) -lemma sex_inv_next2: ∀RN,RP,g,J2,X,K2. X ⪤[RN, RP, ↑g] K2.ⓘ{J2} → - ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & X = K1.ⓘ{J1}. +lemma sex_inv_next2: ∀RN,RP,g,J2,X,K2. X ⪤[RN,RP,↑g] K2.ⓘ{J2} → + ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & X = K1.ⓘ{J1}. /2 width=7 by sex_inv_next2_aux/ qed-. -fact sex_inv_push2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J2,K2. Y = K2.ⓘ{J2} → f = ⫯g → - ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & X = K1.ⓘ{J1}. +fact sex_inv_push2_aux: ∀RN,RP,f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J2,K2. Y = K2.ⓘ{J2} → f = ⫯g → + ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & X = K1.ⓘ{J1}. #RN #RP #f #X #Y * -f -X -Y [ #f #J2 #K2 #g #H destruct | #f #I1 #I2 #L1 #L2 #_ #_ #g #J2 #K2 #_ #H elim (discr_next_push … H) @@ -123,28 +123,28 @@ fact sex_inv_push2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J2,K2. Y = K ] qed-. -lemma sex_inv_push2: ∀RN,RP,g,J2,X,K2. X ⪤[RN, RP, ⫯g] K2.ⓘ{J2} → - ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & X = K1.ⓘ{J1}. +lemma sex_inv_push2: ∀RN,RP,g,J2,X,K2. X ⪤[RN,RP,⫯g] K2.ⓘ{J2} → + ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & X = K1.ⓘ{J1}. /2 width=7 by sex_inv_push2_aux/ qed-. (* Basic_2A1: includes lpx_sn_inv_pair *) lemma sex_inv_next: ∀RN,RP,f,I1,I2,L1,L2. - L1.ⓘ{I1} ⪤[RN, RP, ↑f] L2.ⓘ{I2} → - L1 ⪤[RN, RP, f] L2 ∧ RN L1 I1 I2. + L1.ⓘ{I1} ⪤[RN,RP,↑f] L2.ⓘ{I2} → + L1 ⪤[RN,RP,f] L2 ∧ RN L1 I1 I2. #RN #RP #f #I1 #I2 #L1 #L2 #H elim (sex_inv_next1 … H) -H #I0 #L0 #HL10 #HI10 #H destruct /2 width=1 by conj/ qed-. lemma sex_inv_push: ∀RN,RP,f,I1,I2,L1,L2. - L1.ⓘ{I1} ⪤[RN, RP, ⫯f] L2.ⓘ{I2} → - L1 ⪤[RN, RP, f] L2 ∧ RP L1 I1 I2. + L1.ⓘ{I1} ⪤[RN,RP,⫯f] L2.ⓘ{I2} → + L1 ⪤[RN,RP,f] L2 ∧ RP L1 I1 I2. #RN #RP #f #I1 #I2 #L1 #L2 #H elim (sex_inv_push1 … H) -H #I0 #L0 #HL10 #HI10 #H destruct /2 width=1 by conj/ qed-. -lemma sex_inv_tl: ∀RN,RP,f,I1,I2,L1,L2. L1 ⪤[RN, RP, ⫱f] L2 → +lemma sex_inv_tl: ∀RN,RP,f,I1,I2,L1,L2. L1 ⪤[RN,RP,⫱f] L2 → RN L1 I1 I2 → RP L1 I1 I2 → - L1.ⓘ{I1} ⪤[RN, RP, f] L2.ⓘ{I2}. + L1.ⓘ{I1} ⪤[RN,RP,f] L2.ⓘ{I2}. #RN #RP #f #I1 #I2 #L2 #L2 elim (pn_split f) * /2 width=1 by sex_next, sex_push/ qed-. @@ -152,8 +152,8 @@ qed-. (* Basic forward lemmas *****************************************************) lemma sex_fwd_bind: ∀RN,RP,f,I1,I2,L1,L2. - L1.ⓘ{I1} ⪤[RN, RP, f] L2.ⓘ{I2} → - L1 ⪤[RN, RP, ⫱f] L2. + L1.ⓘ{I1} ⪤[RN,RP,f] L2.ⓘ{I2} → + L1 ⪤[RN,RP,⫱f] L2. #RN #RP #f #I1 #I2 #L1 #L2 #Hf elim (pn_split f) * #g #H destruct [ elim (sex_inv_push … Hf) | elim (sex_inv_next … Hf) ] -Hf // @@ -161,7 +161,7 @@ qed-. (* Basic properties *********************************************************) -lemma sex_eq_repl_back: ∀RN,RP,L1,L2. eq_repl_back … (λf. L1 ⪤[RN, RP, f] L2). +lemma sex_eq_repl_back: ∀RN,RP,L1,L2. eq_repl_back … (λf. L1 ⪤[RN,RP,f] L2). #RN #RP #L1 #L2 #f1 #H elim H -f1 -L1 -L2 // #f1 #I1 #I2 #L1 #L2 #_ #HI #IH #f2 #H [ elim (eq_inv_nx … H) -H /3 width=3 by sex_next/ @@ -169,7 +169,7 @@ lemma sex_eq_repl_back: ∀RN,RP,L1,L2. eq_repl_back … (λf. L1 ⪤[RN, RP, f] ] qed-. -lemma sex_eq_repl_fwd: ∀RN,RP,L1,L2. eq_repl_fwd … (λf. L1 ⪤[RN, RP, f] L2). +lemma sex_eq_repl_fwd: ∀RN,RP,L1,L2. eq_repl_fwd … (λf. L1 ⪤[RN,RP,f] L2). #RN #RP #L1 #L2 @eq_repl_sym /2 width=3 by sex_eq_repl_back/ (**) (* full auto fails *) qed-. @@ -189,20 +189,20 @@ lemma sex_sym: ∀RN,RP. qed-. lemma sex_pair_repl: ∀RN,RP,f,I1,I2,L1,L2. - L1.ⓘ{I1} ⪤[RN, RP, f] L2.ⓘ{I2} → + L1.ⓘ{I1} ⪤[RN,RP,f] L2.ⓘ{I2} → ∀J1,J2. RN L1 J1 J2 → RP L1 J1 J2 → - L1.ⓘ{J1} ⪤[RN, RP, f] L2.ⓘ{J2}. + L1.ⓘ{J1} ⪤[RN,RP,f] L2.ⓘ{J2}. /3 width=3 by sex_inv_tl, sex_fwd_bind/ qed-. lemma sex_co: ∀RN1,RP1,RN2,RP2. RN1 ⊆ RN2 → RP1 ⊆ RP2 → - ∀f,L1,L2. L1 ⪤[RN1, RP1, f] L2 → L1 ⪤[RN2, RP2, f] L2. + ∀f,L1,L2. L1 ⪤[RN1,RP1,f] L2 → L1 ⪤[RN2,RP2,f] L2. #RN1 #RP1 #RN2 #RP2 #HRN #HRP #f #L1 #L2 #H elim H -f -L1 -L2 /3 width=1 by sex_atom, sex_next, sex_push/ qed-. lemma sex_co_isid: ∀RN1,RP1,RN2,RP2. RP1 ⊆ RP2 → - ∀f,L1,L2. L1 ⪤[RN1, RP1, f] L2 → 𝐈⦃f⦄ → - L1 ⪤[RN2, RP2, f] L2. + ∀f,L1,L2. L1 ⪤[RN1,RP1,f] L2 → 𝐈⦃f⦄ → + L1 ⪤[RN2,RP2,f] L2. #RN1 #RP1 #RN2 #RP2 #HR #f #L1 #L2 #H elim H -f -L1 -L2 // #f #I1 #I2 #K1 #K2 #_ #HI12 #IH #H [ elim (isid_inv_next … H) -H // @@ -211,8 +211,8 @@ lemma sex_co_isid: ∀RN1,RP1,RN2,RP2. RP1 ⊆ RP2 → qed-. lemma sex_sdj: ∀RN,RP. RP ⊆ RN → - ∀f1,L1,L2. L1 ⪤[RN, RP, f1] L2 → - ∀f2. f1 ∥ f2 → L1 ⪤[RP, RN, f2] L2. + ∀f1,L1,L2. L1 ⪤[RN,RP,f1] L2 → + ∀f2. f1 ∥ f2 → L1 ⪤[RP,RN,f2] L2. #RN #RP #HR #f1 #L1 #L2 #H elim H -f1 -L1 -L2 // #f1 #I1 #I2 #L1 #L2 #_ #HI12 #IH #f2 #H12 [ elim (sdj_inv_nx … H12) -H12 [2,3: // ] @@ -223,8 +223,8 @@ lemma sex_sdj: ∀RN,RP. RP ⊆ RN → qed-. lemma sle_sex_trans: ∀RN,RP. RN ⊆ RP → - ∀f2,L1,L2. L1 ⪤[RN, RP, f2] L2 → - ∀f1. f1 ⊆ f2 → L1 ⪤[RN, RP, f1] L2. + ∀f2,L1,L2. L1 ⪤[RN,RP,f2] L2 → + ∀f1. f1 ⊆ f2 → L1 ⪤[RN,RP,f1] L2. #RN #RP #HR #f2 #L1 #L2 #H elim H -f2 -L1 -L2 // #f2 #I1 #I2 #L1 #L2 #_ #HI12 #IH #f1 #H12 [ elim (pn_split f1) * ] @@ -236,8 +236,8 @@ lemma sle_sex_trans: ∀RN,RP. RN ⊆ RP → qed-. lemma sle_sex_conf: ∀RN,RP. RP ⊆ RN → - ∀f1,L1,L2. L1 ⪤[RN, RP, f1] L2 → - ∀f2. f1 ⊆ f2 → L1 ⪤[RN, RP, f2] L2. + ∀f1,L1,L2. L1 ⪤[RN,RP,f1] L2 → + ∀f2. f1 ⊆ f2 → L1 ⪤[RN,RP,f2] L2. #RN #RP #HR #f1 #L1 #L2 #H elim H -f1 -L1 -L2 // #f1 #I1 #I2 #L1 #L2 #_ #HI12 #IH #f2 #H12 [2: elim (pn_split f2) * ] @@ -249,8 +249,8 @@ lemma sle_sex_conf: ∀RN,RP. RP ⊆ RN → qed-. lemma sex_sle_split: ∀R1,R2,RP. c_reflexive … R1 → c_reflexive … R2 → - ∀f,L1,L2. L1 ⪤[R1, RP, f] L2 → ∀g. f ⊆ g → - ∃∃L. L1 ⪤[R1, RP, g] L & L ⪤[R2, cfull, f] L2. + ∀f,L1,L2. L1 ⪤[R1,RP,f] L2 → ∀g. f ⊆ g → + ∃∃L. L1 ⪤[R1,RP,g] L & L ⪤[R2,cfull,f] L2. #R1 #R2 #RP #HR1 #HR2 #f #L1 #L2 #H elim H -f -L1 -L2 [ /2 width=3 by sex_atom, ex2_intro/ ] #f #I1 #I2 #L1 #L2 #_ #HI12 #IH #y #H @@ -262,8 +262,8 @@ lemma sex_sle_split: ∀R1,R2,RP. c_reflexive … R1 → c_reflexive … R2 → qed-. lemma sex_sdj_split: ∀R1,R2,RP. c_reflexive … R1 → c_reflexive … R2 → - ∀f,L1,L2. L1 ⪤[R1, RP, f] L2 → ∀g. f ∥ g → - ∃∃L. L1 ⪤[RP, R1, g] L & L ⪤[R2, cfull, f] L2. + ∀f,L1,L2. L1 ⪤[R1,RP,f] L2 → ∀g. f ∥ g → + ∃∃L. L1 ⪤[RP,R1,g] L & L ⪤[R2,cfull,f] L2. #R1 #R2 #RP #HR1 #HR2 #f #L1 #L2 #H elim H -f -L1 -L2 [ /2 width=3 by sex_atom, ex2_intro/ ] #f #I1 #I2 #L1 #L2 #_ #HI12 #IH #y #H @@ -277,7 +277,7 @@ qed-. lemma sex_dec: ∀RN,RP. (∀L,I1,I2. Decidable (RN L I1 I2)) → (∀L,I1,I2. Decidable (RP L I1 I2)) → - ∀L1,L2,f. Decidable (L1 ⪤[RN, RP, f] L2). + ∀L1,L2,f. Decidable (L1 ⪤[RN,RP,f] L2). #RN #RP #HRN #HRP #L1 elim L1 -L1 [ * | #L1 #I1 #IH * ] [ /2 width=1 by sex_atom, or_introl/ | #L2 #I2 #f @or_intror #H