X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fstatic_2%2Fstatic%2Frex_fsle.ma;h=641fc459dad28879f9cbc9766457bb9447770a40;hp=7974bb900c8a1233f1139bd1cfd2a4e8f5a083c2;hb=bd53c4e895203eb049e75434f638f26b5a161a2b;hpb=3b7b8afcb429a60d716d5226a5b6ab0d003228b1 diff --git a/matita/matita/contribs/lambdadelta/static_2/static/rex_fsle.ma b/matita/matita/contribs/lambdadelta/static_2/static/rex_fsle.ma index 7974bb900..641fc459d 100644 --- a/matita/matita/contribs/lambdadelta/static_2/static/rex_fsle.ma +++ b/matita/matita/contribs/lambdadelta/static_2/static/rex_fsle.ma @@ -20,21 +20,21 @@ include "static_2/static/rex_rex.ma". (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****) definition R_fsge_compatible: predicate (relation3 …) ≝ λRN. - ∀L,T1,T2. RN L T1 T2 → ⦃L,T2⦄ ⊆ ⦃L,T1⦄. + ∀L,T1,T2. RN L T1 T2 → ❪L,T2❫ ⊆ ❪L,T1❫. definition rex_fsge_compatible: predicate (relation3 …) ≝ λRN. - ∀L1,L2,T. L1 ⪤[RN,T] L2 → ⦃L2,T⦄ ⊆ ⦃L1,T⦄. + ∀L1,L2,T. L1 ⪤[RN,T] L2 → ❪L2,T❫ ⊆ ❪L1,T❫. definition rex_fsle_compatible: predicate (relation3 …) ≝ λRN. - ∀L1,L2,T. L1 ⪤[RN,T] L2 → ⦃L1,T⦄ ⊆ ⦃L2,T⦄. + ∀L1,L2,T. L1 ⪤[RN,T] L2 → ❪L1,T❫ ⊆ ❪L2,T❫. (* Basic inversions with free variables inclusion for restricted closures ***) lemma frees_sex_conf (R): rex_fsge_compatible R → - ∀L1,T,f1. L1 ⊢ 𝐅+⦃T⦄ ≘ f1 → + ∀L1,T,f1. L1 ⊢ 𝐅+❪T❫ ≘ f1 → ∀L2. L1 ⪤[cext2 R,cfull,f1] L2 → - ∃∃f2. L2 ⊢ 𝐅+⦃T⦄ ≘ f2 & f2 ⊆ f1. + ∃∃f2. L2 ⊢ 𝐅+❪T❫ ≘ f2 & f2 ⊆ f1. #R #HR #L1 #T #f1 #Hf1 #L2 #H1L lapply (HR L1 L2 T ?) /2 width=3 by ex2_intro/ #H2L @(fsle_frees_trans_eq … H2L … Hf1) /3 width=4 by sex_fwd_length, sym_eq/ @@ -44,7 +44,7 @@ qed-. (* Note: we just need lveq_inv_refl: ∀L, n1, n2. L ≋ⓧ*[n1, n2] L → ∧∧ 0 = n1 & 0 = n2 *) lemma fsge_rex_trans (R): - ∀L1,T1,T2. ⦃L1,T1⦄ ⊆ ⦃L1,T2⦄ → + ∀L1,T1,T2. ❪L1,T1❫ ⊆ ❪L1,T2❫ → ∀L2. L1 ⪤[R,T2] L2 → L1 ⪤[R,T1] L2. #R #L1 #T1 #T2 * #n1 #n2 #f1 #f2 #Hf1 #Hf2 #Hn #Hf #L2 #HL12 elim (lveq_inj_length … Hn ?) // #H1 #H2 destruct @@ -65,11 +65,11 @@ lemma rex_pair_sn_split (R1) (R2): (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → rex_fsge_compatible R1 → ∀L1,L2,V. L1 ⪤[R1,V] L2 → ∀I,T. - ∃∃L. L1 ⪤[R1,②{I}V.T] L & L ⪤[R2,V] L2. + ∃∃L. L1 ⪤[R1,②[I]V.T] L & L ⪤[R2,V] L2. #R1 #R2 #HR1 #HR2 #HR #L1 #L2 #V * #f #Hf #HL12 * [ #p ] #I #T -[ elim (frees_total L1 (ⓑ{p,I}V.T)) #g #Hg +[ elim (frees_total L1 (ⓑ[p,I]V.T)) #g #Hg elim (frees_inv_bind … Hg) #y1 #y2 #H #_ #Hy -| elim (frees_total L1 (ⓕ{I}V.T)) #g #Hg +| elim (frees_total L1 (ⓕ[I]V.T)) #g #Hg elim (frees_inv_flat … Hg) #y1 #y2 #H #_ #Hy ] lapply(frees_mono … H … Hf) -H #H1 @@ -85,9 +85,9 @@ lemma rex_flat_dx_split (R1) (R2): (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → rex_fsge_compatible R1 → ∀L1,L2,T. L1 ⪤[R1,T] L2 → ∀I,V. - ∃∃L. L1 ⪤[R1,ⓕ{I}V.T] L & L ⪤[R2,T] L2. + ∃∃L. L1 ⪤[R1,ⓕ[I]V.T] L & L ⪤[R2,T] L2. #R1 #R2 #HR1 #HR2 #HR #L1 #L2 #T * #f #Hf #HL12 #I #V -elim (frees_total L1 (ⓕ{I}V.T)) #g #Hg +elim (frees_total L1 (ⓕ[I]V.T)) #g #Hg elim (frees_inv_flat … Hg) #y1 #y2 #_ #H #Hy lapply(frees_mono … H … Hf) -H #H2 lapply (sor_eq_repl_back2 … Hy … H2) -y2 #Hy @@ -101,10 +101,10 @@ qed-. lemma rex_bind_dx_split (R1) (R2): (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → rex_fsge_compatible R1 → - ∀I,L1,L2,V1,T. L1.ⓑ{I}V1 ⪤[R1,T] L2 → ∀p. - ∃∃L,V. L1 ⪤[R1,ⓑ{p,I}V1.T] L & L.ⓑ{I}V ⪤[R2,T] L2 & R1 L1 V1 V. + ∀I,L1,L2,V1,T. L1.ⓑ[I]V1 ⪤[R1,T] L2 → ∀p. + ∃∃L,V. L1 ⪤[R1,ⓑ[p,I]V1.T] L & L.ⓑ[I]V ⪤[R2,T] L2 & R1 L1 V1 V. #R1 #R2 #HR1 #HR2 #HR #I #L1 #L2 #V1 #T * #f #Hf #HL12 #p -elim (frees_total L1 (ⓑ{p,I}V1.T)) #g #Hg +elim (frees_total L1 (ⓑ[p,I]V1.T)) #g #Hg elim (frees_inv_bind … Hg) #y1 #y2 #_ #H #Hy lapply(frees_mono … H … Hf) -H #H2 lapply (tl_eq_repl … H2) -H2 #H2 @@ -123,9 +123,9 @@ lemma rex_bind_dx_split_void (R1) (R2): (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) → rex_fsge_compatible R1 → ∀L1,L2,T. L1.ⓧ ⪤[R1,T] L2 → ∀p,I,V. - ∃∃L. L1 ⪤[R1,ⓑ{p,I}V.T] L & L.ⓧ ⪤[R2,T] L2. + ∃∃L. L1 ⪤[R1,ⓑ[p,I]V.T] L & L.ⓧ ⪤[R2,T] L2. #R1 #R2 #HR1 #HR2 #HR #L1 #L2 #T * #f #Hf #HL12 #p #I #V -elim (frees_total L1 (ⓑ{p,I}V.T)) #g #Hg +elim (frees_total L1 (ⓑ[p,I]V.T)) #g #Hg elim (frees_inv_bind_void … Hg) #y1 #y2 #_ #H #Hy lapply(frees_mono … H … Hf) -H #H2 lapply (tl_eq_repl … H2) -H2 #H2