X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fstatic_2%2Fsyntax%2Fterm.ma;h=0a6f97872a2e199d22d582cc0b087b8edadae198;hp=83937e544226be06d98f104f1ba78a054d19d80e;hb=e23331eef5817eaa6c5e1c442d1d6bbb18650573;hpb=b118146b97959e6a6dde18fdd014b8e1e676a2d1 diff --git a/matita/matita/contribs/lambdadelta/static_2/syntax/term.ma b/matita/matita/contribs/lambdadelta/static_2/syntax/term.ma index 83937e544..0a6f97872 100644 --- a/matita/matita/contribs/lambdadelta/static_2/syntax/term.ma +++ b/matita/matita/contribs/lambdadelta/static_2/syntax/term.ma @@ -36,72 +36,91 @@ include "static_2/syntax/item.ma". (* terms *) inductive term: Type[0] ≝ - | TAtom: item0 → term (* atomic item construction *) - | TPair: item2 → term → term → term (* binary item construction *) +| TAtom: item0 → term (* atomic item construction *) +| TPair: item2 → term → term → term (* binary item construction *) . -interpretation "term construction (atomic)" - 'Item0 I = (TAtom I). +interpretation + "term construction (atomic)" + 'Item0 I = (TAtom I). -interpretation "term construction (binary)" - 'SnItem2 I T1 T2 = (TPair I T1 T2). +interpretation + "term construction (binary)" + 'SnItem2 I T1 T2 = (TPair I T1 T2). -interpretation "term binding construction (binary)" - 'SnBind2 p I T1 T2 = (TPair (Bind2 p I) T1 T2). +interpretation + "term binding construction (binary)" + 'SnBind2 p I T1 T2 = (TPair (Bind2 p I) T1 T2). -interpretation "term positive binding construction (binary)" - 'SnBind2Pos I T1 T2 = (TPair (Bind2 true I) T1 T2). +interpretation + "term positive binding construction (binary)" + 'SnBind2Pos I T1 T2 = (TPair (Bind2 true I) T1 T2). -interpretation "term negative binding construction (binary)" - 'SnBind2Neg I T1 T2 = (TPair (Bind2 false I) T1 T2). +interpretation + "term negative binding construction (binary)" + 'SnBind2Neg I T1 T2 = (TPair (Bind2 false I) T1 T2). -interpretation "term flat construction (binary)" - 'SnFlat2 I T1 T2 = (TPair (Flat2 I) T1 T2). +interpretation + "term flat construction (binary)" + 'SnFlat2 I T1 T2 = (TPair (Flat2 I) T1 T2). -interpretation "sort (term)" - 'Star s = (TAtom (Sort s)). +interpretation + "sort (term)" + 'Star s = (TAtom (Sort s)). -interpretation "local reference (term)" - 'LRef i = (TAtom (LRef i)). +interpretation + "local reference (term)" + 'LRef i = (TAtom (LRef i)). -interpretation "global reference (term)" - 'GRef l = (TAtom (GRef l)). +interpretation + "global reference (term)" + 'GRef l = (TAtom (GRef l)). -interpretation "abbreviation (term)" - 'SnAbbr p T1 T2 = (TPair (Bind2 p Abbr) T1 T2). +interpretation + "abbreviation (term)" + 'SnAbbr p T1 T2 = (TPair (Bind2 p Abbr) T1 T2). -interpretation "positive abbreviation (term)" - 'SnAbbrPos T1 T2 = (TPair (Bind2 true Abbr) T1 T2). +interpretation + "positive abbreviation (term)" + 'SnAbbrPos T1 T2 = (TPair (Bind2 true Abbr) T1 T2). -interpretation "negative abbreviation (term)" - 'SnAbbrNeg T1 T2 = (TPair (Bind2 false Abbr) T1 T2). +interpretation + "negative abbreviation (term)" + 'SnAbbrNeg T1 T2 = (TPair (Bind2 false Abbr) T1 T2). -interpretation "abstraction (term)" - 'SnAbst p T1 T2 = (TPair (Bind2 p Abst) T1 T2). +interpretation + "abstraction (term)" + 'SnAbst p T1 T2 = (TPair (Bind2 p Abst) T1 T2). -interpretation "positive abstraction (term)" - 'SnAbstPos T1 T2 = (TPair (Bind2 true Abst) T1 T2). +interpretation + "positive abstraction (term)" + 'SnAbstPos T1 T2 = (TPair (Bind2 true Abst) T1 T2). -interpretation "negative abstraction (term)" - 'SnAbstNeg T1 T2 = (TPair (Bind2 false Abst) T1 T2). +interpretation + "negative abstraction (term)" + 'SnAbstNeg T1 T2 = (TPair (Bind2 false Abst) T1 T2). -interpretation "application (term)" - 'SnAppl T1 T2 = (TPair (Flat2 Appl) T1 T2). +interpretation + "application (term)" + 'SnAppl T1 T2 = (TPair (Flat2 Appl) T1 T2). -interpretation "native type annotation (term)" - 'SnCast T1 T2 = (TPair (Flat2 Cast) T1 T2). +interpretation + "native type annotation (term)" + 'SnCast T1 T2 = (TPair (Flat2 Cast) T1 T2). (* Basic properties *********************************************************) -lemma abst_dec (X): ∨∨ ∃∃p,W,T. X = ⓛ[p]W.T - | (∀p,W,T. X = ⓛ[p]W.T → ⊥). +lemma abst_dec (X): + ∨∨ ∃∃p,W,T. X = ⓛ[p]W.T + | (∀p,W,T. X = ⓛ[p]W.T → ⊥). * [ #I | * [ #p * | #I ] #V #T ] [3: /3 width=4 by ex1_3_intro, or_introl/ ] @or_intror #q #W #U #H destruct qed-. (* Basic_1: was: term_dec *) -lemma eq_term_dec: ∀T1,T2:term. Decidable (T1 = T2). +lemma eq_term_dec: + ∀T1,T2:term. Decidable (T1 = T2). #T1 elim T1 -T1 #I1 [| #V1 #T1 #IHV1 #IHT1 ] * #I2 [2,4: #V2 #T2 ] [1,4: @or_intror #H destruct | elim (eq_item2_dec I1 I2) #HI @@ -116,16 +135,19 @@ qed-. (* Basic inversion lemmas ***************************************************) -fact destruct_tatom_tatom_aux: ∀I1,I2. ⓪[I1] = ⓪[I2] → I1 = I2. +fact destruct_tatom_tatom_aux: + ∀I1,I2. ⓪[I1] = ⓪[I2] → I1 = I2. #I1 #I2 #H destruct // qed-. -fact destruct_tpair_tpair_aux: ∀I1,I2,T1,T2,V1,V2. ②[I1]T1.V1 = ②[I2]T2.V2 → - ∧∧T1 = T2 & I1 = I2 & V1 = V2. +fact destruct_tpair_tpair_aux: + ∀I1,I2,T1,T2,V1,V2. ②[I1]T1.V1 = ②[I2]T2.V2 → + ∧∧ T1 = T2 & I1 = I2 & V1 = V2. #I1 #I2 #T1 #T2 #V1 #V2 #H destruct /2 width=1 by and3_intro/ qed-. -lemma discr_tpair_xy_x: ∀I,T,V. ②[I]V.T = V → ⊥. +lemma discr_tpair_xy_x: + ∀I,T,V. ②[I]V.T = V → ⊥. #I #T #V elim V -V [ #J #H destruct | #J #W #U #IHW #_ #H elim (destruct_tpair_tpair_aux … H) -H /2 width=1 by/ (**) (* destruct lemma needed *) @@ -133,24 +155,27 @@ lemma discr_tpair_xy_x: ∀I,T,V. ②[I]V.T = V → ⊥. qed-. (* Basic_1: was: thead_x_y_y *) -lemma discr_tpair_xy_y: ∀I,V,T. ②[I]V.T = T → ⊥. +lemma discr_tpair_xy_y: + ∀I,V,T. ②[I]V.T = T → ⊥. #I #V #T elim T -T [ #J #H destruct | #J #W #U #_ #IHU #H elim (destruct_tpair_tpair_aux … H) -H /2 width=1 by/ (**) (* destruct lemma needed *) ] qed-. -lemma eq_false_inv_tpair_sn: ∀I,V1,T1,V2,T2. - (②[I]V1.T1 = ②[I]V2.T2 → ⊥) → - (V1 = V2 → ⊥) ∨ (V1 = V2 ∧ (T1 = T2 → ⊥)). +lemma eq_false_inv_tpair_sn: + ∀I,V1,T1,V2,T2. + (②[I]V1.T1 = ②[I]V2.T2 → ⊥) → + (V1 = V2 → ⊥) ∨ (V1 = V2 ∧ (T1 = T2 → ⊥)). #I #V1 #T1 #V2 #T2 #H elim (eq_term_dec V1 V2) /3 width=1 by or_introl/ #HV12 destruct @or_intror @conj // #HT12 destruct /2 width=1 by/ qed-. -lemma eq_false_inv_tpair_dx: ∀I,V1,T1,V2,T2. - (②[I] V1. T1 = ②[I]V2.T2 → ⊥) → - (T1 = T2 → ⊥) ∨ (T1 = T2 ∧ (V1 = V2 → ⊥)). +lemma eq_false_inv_tpair_dx: + ∀I,V1,T1,V2,T2. + (②[I] V1. T1 = ②[I]V2.T2 → ⊥) → + (T1 = T2 → ⊥) ∨ (T1 = T2 ∧ (V1 = V2 → ⊥)). #I #V1 #T1 #V2 #T2 #H elim (eq_term_dec T1 T2) /3 width=1 by or_introl/ #HT12 destruct @or_intror @conj // #HT12 destruct /2 width=1 by/