X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Ftests%2FTPTP%2FVeloci%2FRNG011-5.p.ma;fp=matita%2Ftests%2FTPTP%2FVeloci%2FRNG011-5.p.ma;h=edd9c711098e1227610454f4deb3ab154ec1c574;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/tests/TPTP/Veloci/RNG011-5.p.ma b/matita/tests/TPTP/Veloci/RNG011-5.p.ma new file mode 100644 index 000000000..edd9c7110 --- /dev/null +++ b/matita/tests/TPTP/Veloci/RNG011-5.p.ma @@ -0,0 +1,83 @@ + +include "logic/equality.ma". +(* Inclusion of: RNG011-5.p *) +(* -------------------------------------------------------------------------- *) +(* File : RNG011-5 : TPTP v3.1.1. Released v1.0.0. *) +(* Domain : Ring Theory *) +(* Problem : In a right alternative ring (((X,X,Y)*X)*(X,X,Y)) = Add Id *) +(* Version : [Ove90] (equality) axioms : *) +(* Incomplete > Augmented > Incomplete. *) +(* English : *) +(* Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 *) +(* : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal *) +(* : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 *) +(* : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in *) +(* Source : [Ove90] *) +(* Names : CADE-11 Competition Eq-10 [Ove90] *) +(* : THEOREM EQ-10 [LM93] *) +(* : PROBLEM 10 [Zha93] *) +(* Status : Unsatisfiable *) +(* Rating : 0.00 v2.0.0 *) +(* Syntax : Number of clauses : 22 ( 0 non-Horn; 22 unit; 2 RR) *) +(* Number of atoms : 22 ( 22 equality) *) +(* Maximal clause size : 1 ( 1 average) *) +(* Number of predicates : 1 ( 0 propositional; 2-2 arity) *) +(* Number of functors : 8 ( 3 constant; 0-3 arity) *) +(* Number of variables : 37 ( 2 singleton) *) +(* Maximal term depth : 5 ( 2 average) *) +(* Comments : *) +(* -------------------------------------------------------------------------- *) +(* ----Commutativity of addition *) +(* ----Associativity of addition *) +(* ----Additive identity *) +(* ----Additive inverse *) +(* ----Inverse of identity is identity, stupid *) +(* ----Axiom of Overbeek *) +(* ----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y), *) +(* ----Inverse of additive_inverse of X is X *) +(* ----Behavior of 0 and the multiplication operation *) +(* ----Axiom of Overbeek *) +(* ----x * additive_inverse(y) = additive_inverse (x * y), *) +(* ----Distributive property of product over sum *) +(* ----Right alternative law *) +(* ----Associator *) +(* ----Commutator *) +(* ----Middle associator identity *) +theorem prove_equality: + \forall Univ:Set. +\forall a:Univ. +\forall add:\forall _:Univ.\forall _:Univ.Univ. +\forall additive_identity:Univ. +\forall additive_inverse:\forall _:Univ.Univ. +\forall associator:\forall _:Univ.\forall _:Univ.\forall _:Univ.Univ. +\forall b:Univ. +\forall commutator:\forall _:Univ.\forall _:Univ.Univ. +\forall multiply:\forall _:Univ.\forall _:Univ.Univ. +\forall H0:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (multiply (associator X X Y) X) (associator X X Y)) additive_identity. +\forall H1:\forall X:Univ.\forall Y:Univ.eq Univ (commutator X Y) (add (multiply Y X) (additive_inverse (multiply X Y))). +\forall H2:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (associator X Y Z) (add (multiply (multiply X Y) Z) (additive_inverse (multiply X (multiply Y Z)))). +\forall H3:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (multiply X Y) Y) (multiply X (multiply Y Y)). +\forall H4:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)). +\forall H5:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)). +\forall H6:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)). +\forall H7:\forall X:Univ.\forall Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)). +\forall H8:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y). +\forall H9:\forall X:Univ.eq Univ (multiply additive_identity X) additive_identity. +\forall H10:\forall X:Univ.eq Univ (multiply X additive_identity) additive_identity. +\forall H11:\forall X:Univ.eq Univ (additive_inverse (additive_inverse X)) X. +\forall H12:\forall X:Univ.\forall Y:Univ.eq Univ (additive_inverse (add X Y)) (add (additive_inverse X) (additive_inverse Y)). +\forall H13:\forall X:Univ.\forall Y:Univ.eq Univ (add X (add (additive_inverse X) Y)) Y. +\forall H14:eq Univ (additive_inverse additive_identity) additive_identity. +\forall H15:\forall X:Univ.eq Univ (add (additive_inverse X) X) additive_identity. +\forall H16:\forall X:Univ.eq Univ (add X (additive_inverse X)) additive_identity. +\forall H17:\forall X:Univ.eq Univ (add additive_identity X) X. +\forall H18:\forall X:Univ.eq Univ (add X additive_identity) X. +\forall H19:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)). +\forall H20:\forall X:Univ.\forall Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (associator a a b) a) (associator a a b)) additive_identity +. +intros. +autobatch paramodulation timeout=100; +try assumption. +print proofterm. +qed. +(* -------------------------------------------------------------------------- *)