From b8e8c61042dd7d4d8bc00971e1ebcd6858064682 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Fri, 28 Dec 2018 16:25:21 +0100 Subject: [PATCH] reverse_complexity lib restored the toolkit.ma file contains errors. I have commented out a few places --- .../matita/lib/reverse_complexity/almost.ma | 24 + .../matita/lib/reverse_complexity/basics.ma | 106 ++ .../reverse_complexity/big_O.ma | 0 .../lib/reverse_complexity/bigops_compl.ma | 607 ++++++ .../lib/reverse_complexity/complexity.ma | 290 +++ .../reverse_complexity/gap.ma | 0 .../reverse_complexity/hierarchy.ma | 210 +-- .../lib/reverse_complexity/sigma_diseq.ma | 153 ++ .../reverse_complexity/speed_clean.ma | 0 .../reverse_complexity/speed_def.ma | 0 .../reverse_complexity/speed_new.ma | 0 .../reverse_complexity/speedup.ma} | 324 +--- .../matita/lib/reverse_complexity/toolkit.ma | 1623 +++++++++++++++++ 13 files changed, 2908 insertions(+), 429 deletions(-) create mode 100644 matita/matita/lib/reverse_complexity/almost.ma create mode 100644 matita/matita/lib/reverse_complexity/basics.ma rename matita/matita/{broken_lib => lib}/reverse_complexity/big_O.ma (100%) create mode 100644 matita/matita/lib/reverse_complexity/bigops_compl.ma create mode 100644 matita/matita/lib/reverse_complexity/complexity.ma rename matita/matita/{broken_lib => lib}/reverse_complexity/gap.ma (100%) rename matita/matita/{broken_lib => lib}/reverse_complexity/hierarchy.ma (75%) create mode 100644 matita/matita/lib/reverse_complexity/sigma_diseq.ma rename matita/matita/{broken_lib => lib}/reverse_complexity/speed_clean.ma (100%) rename matita/matita/{broken_lib => lib}/reverse_complexity/speed_def.ma (100%) rename matita/matita/{broken_lib => lib}/reverse_complexity/speed_new.ma (100%) rename matita/matita/{broken_lib/reverse_complexity/toolkit.ma => lib/reverse_complexity/speedup.ma} (71%) create mode 100644 matita/matita/lib/reverse_complexity/toolkit.ma diff --git a/matita/matita/lib/reverse_complexity/almost.ma b/matita/matita/lib/reverse_complexity/almost.ma new file mode 100644 index 000000000..75578d0f9 --- /dev/null +++ b/matita/matita/lib/reverse_complexity/almost.ma @@ -0,0 +1,24 @@ +include "reverse_complexity/speedup.ma". + +definition aes : (nat → nat) → (nat → nat) → Prop ≝ λf,g. + ∃n.∀m. n ≤ m → f m = g m. + +lemma CF_almost: ∀f,g,s. CF s g → aes g f → CF s f. +#f #g #s #CFg * #n lapply CFg -CFg lapply g -g +elim n + [#g #CFg #H @(ext_CF … g) [#m @H // |//] + |#i #Hind #g #CFg #H + @(Hind (λx. if eqb i x then f i else g x)) + [@CF_if + [@(O_to_CF … MSC) [@le_to_O @(MSC_in … CFg)] @CF_eqb // + |@(O_to_CF … MSC) [@le_to_O @(MSC_in … CFg)] @CF_const + |@CFg + ] + |#m #leim cases (le_to_or_lt_eq … leim) + [#ltim lapply (lt_to_not_eq … ltim) #noteqim + >(not_eq_to_eqb_false … noteqim) @H @ltim + |#eqim >eqim >eqb_n_n // + ] + ] + ] +qed. \ No newline at end of file diff --git a/matita/matita/lib/reverse_complexity/basics.ma b/matita/matita/lib/reverse_complexity/basics.ma new file mode 100644 index 000000000..de383d1d0 --- /dev/null +++ b/matita/matita/lib/reverse_complexity/basics.ma @@ -0,0 +1,106 @@ +include "basics/types.ma". +include "arithmetics/nat.ma". + +(********************************** pairing ***********************************) +axiom pair: nat → nat → nat. +axiom fst : nat → nat. +axiom snd : nat → nat. + +interpretation "abstract pair" 'pair f g = (pair f g). + +axiom fst_pair: ∀a,b. fst 〈a,b〉 = a. +axiom snd_pair: ∀a,b. snd 〈a,b〉 = b. +axiom surj_pair: ∀x. ∃a,b. x = 〈a,b〉. + +axiom le_fst : ∀p. fst p ≤ p. +axiom le_snd : ∀p. snd p ≤ p. +axiom le_pair: ∀a,a1,b,b1. a ≤ a1 → b ≤ b1 → 〈a,b〉 ≤ 〈a1,b1〉. + +lemma expand_pair: ∀x. x = 〈fst x, snd x〉. +#x lapply (surj_pair x) * #a * #b #Hx >Hx >fst_pair >snd_pair // +qed. + +(************************************* U **************************************) +axiom U: nat → nat →nat → option nat. + +axiom monotonic_U: ∀i,x,n,m,y.n ≤m → + U i x n = Some ? y → U i x m = Some ? y. + +lemma unique_U: ∀i,x,n,m,yn,ym. + U i x n = Some ? yn → U i x m = Some ? ym → yn = ym. +#i #x #n #m #yn #ym #Hn #Hm cases (decidable_le n m) + [#lenm lapply (monotonic_U … lenm Hn) >Hm #HS destruct (HS) // + |#ltmn lapply (monotonic_U … n … Hm) [@lt_to_le @not_le_to_lt //] + >Hn #HS destruct (HS) // + ] +qed. + +definition code_for ≝ λf,i.∀x. + ∃n.∀m. n ≤ m → U i x m = f x. + +definition terminate ≝ λi,x,r. ∃y. U i x r = Some ? y. + +notation "{i ⊙ x} ↓ r" with precedence 60 for @{terminate $i $x $r}. + +lemma terminate_dec: ∀i,x,n. {i ⊙ x} ↓ n ∨ ¬ {i ⊙ x} ↓ n. +#i #x #n normalize cases (U i x n) + [%2 % * #y #H destruct|#y %1 %{y} //] +qed. + +lemma monotonic_terminate: ∀i,x,n,m. + n ≤ m → {i ⊙ x} ↓ n → {i ⊙ x} ↓ m. +#i #x #n #m #lenm * #z #H %{z} @(monotonic_U … H) // +qed. + +definition termb ≝ λi,x,t. + match U i x t with [None ⇒ false |Some y ⇒ true]. + +lemma termb_true_to_term: ∀i,x,t. termb i x t = true → {i ⊙ x} ↓ t. +#i #x #t normalize cases (U i x t) normalize [#H destruct | #y #_ %{y} //] +qed. + +lemma term_to_termb_true: ∀i,x,t. {i ⊙ x} ↓ t → termb i x t = true. +#i #x #t * #y #H normalize >H // +qed. + +definition out ≝ λi,x,r. + match U i x r with [ None ⇒ 0 | Some z ⇒ z]. + +definition bool_to_nat: bool → nat ≝ + λb. match b with [true ⇒ 1 | false ⇒ 0]. + +coercion bool_to_nat. + +definition pU : nat → nat → nat → nat ≝ λi,x,r.〈termb i x r,out i x r〉. + +lemma pU_vs_U_Some : ∀i,x,r,y. pU i x r = 〈1,y〉 ↔ U i x r = Some ? y. +#i #x #r #y % normalize + [cases (U i x r) normalize + [#H cut (0=1) [lapply (eq_f … fst … H) >fst_pair >fst_pair #H @H] + #H1 destruct + |#a #H cut (a=y) [lapply (eq_f … snd … H) >snd_pair >snd_pair #H1 @H1] + #H1 // + ] + |#H >H //] +qed. + +lemma pU_vs_U_None : ∀i,x,r. pU i x r = 〈0,0〉 ↔ U i x r = None ?. +#i #x #r % normalize + [cases (U i x r) normalize // + #a #H cut (1=0) [lapply (eq_f … fst … H) >fst_pair >fst_pair #H1 @H1] + #H1 destruct + |#H >H //] +qed. + +lemma fst_pU: ∀i,x,r. fst (pU i x r) = termb i x r. +#i #x #r normalize cases (U i x r) normalize >fst_pair // +qed. + +lemma snd_pU: ∀i,x,r. snd (pU i x r) = out i x r. +#i #x #r normalize cases (U i x r) normalize >snd_pair // +qed. + + +definition total ≝ λf.λx:nat. Some nat (f x). + + diff --git a/matita/matita/broken_lib/reverse_complexity/big_O.ma b/matita/matita/lib/reverse_complexity/big_O.ma similarity index 100% rename from matita/matita/broken_lib/reverse_complexity/big_O.ma rename to matita/matita/lib/reverse_complexity/big_O.ma diff --git a/matita/matita/lib/reverse_complexity/bigops_compl.ma b/matita/matita/lib/reverse_complexity/bigops_compl.ma new file mode 100644 index 000000000..032174a0c --- /dev/null +++ b/matita/matita/lib/reverse_complexity/bigops_compl.ma @@ -0,0 +1,607 @@ +include "reverse_complexity/complexity.ma". +include "reverse_complexity/sigma_diseq.ma". + +include alias "reverse_complexity/basics.ma". + +lemma bigop_prim_rec: ∀a,b,c,p,f,x. + bigop (b x-a x) (λi:ℕ.p 〈i+a x,x〉) ? (c 〈a x,x〉) plus (λi:ℕ.f 〈i+a x,x〉) = + prim_rec c + (λi.if p 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + then plus (f 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈a x ,x〉. +#a #b #c #p #f #x normalize elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i+a x,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma bigop_prim_rec_dec: ∀a,b,c,p,f,x. + bigop (b x-a x) (λi:ℕ.p 〈b x -i,x〉) ? (c 〈b x,x〉) plus (λi:ℕ.f 〈b x-i,x〉) = + prim_rec c + (λi.if p 〈fst (snd (snd i)) - fst i,snd (snd (snd i))〉 + then plus (f 〈fst (snd (snd i)) - fst i,snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈b x ,x〉. +#a #b #c #p #f #x normalize elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈b x - i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma bigop_prim_rec_dec1: ∀a,b,c,p,f,x. + bigop (S(b x)-a x) (λi:ℕ.p 〈b x - i,x〉) ? (c 〈b x,x〉) plus (λi:ℕ.f 〈b x- i,x〉) = + prim_rec c + (λi.if p 〈fst (snd (snd i)) - (fst i),snd (snd (snd i))〉 + then plus (f 〈fst (snd (snd i)) - (fst i),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (S(b x)-a x) 〈b x,x〉. +#a #b #c #p #f #x elim (S(b x)-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈b x - i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma sum_prim_rec1: ∀a,b,p,f,x. + ∑_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + then f 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + fst (snd i) + else fst (snd i)) (b x-a x) 〈a x ,x〉. +#a #b #p #f #x elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i+a x,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma bigop_plus_c: ∀k,p,f,c. + c k + bigop k (λi.p i) ? 0 plus (λi.f i) = + bigop k (λi.p i) ? (c k) plus (λi.f i). +#k #p #f elim k [normalize //] +#i #Hind #c cases (true_or_false (p i)) #Hcase +[>bigop_Strue // >bigop_Strue // (commutative_plus ? (f i)) + >associative_plus @eq_f @Hind +|>bigop_Sfalse // >bigop_Sfalse // +] +qed. + + +(*********************************** maximum **********************************) + +lemma max_gen: ∀a,b,p,f,x. a ≤b → + max_{i ∈[a,b[ | p 〈i,x〉 }(f 〈i,x〉) = max_{i < b | leb a i ∧ p 〈i,x〉 }(f 〈i,x〉). +#a #b #p #f #x @(bigop_I_gen ????? MaxA) +qed. + +lemma max_prim_rec_base: ∀a,b,p,f,x. a ≤b → + max_{i < b| p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i,x〉 then max (f 〈fst i,snd (snd i)〉) (fst (snd i)) else fst (snd i)) b x. +#a #b #p #f #x #leab >max_gen // elim b + [normalize // + |#i #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma max_prim_rec: ∀a,b,p,f,x. a ≤b → + max_{i ∈[a,b[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if leb a (fst i) ∧ p 〈fst i,x〉 then max (f 〈fst i,snd (snd i)〉) (fst (snd i)) else fst (snd i)) b x. +#a #b #p #f #x #leab >max_gen // elim b + [normalize // + |#i #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >fst_pair + cases (true_or_false (leb a i ∧ p 〈i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma max_prim_rec1: ∀a,b,p,f,x. + max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + then max (f 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈a x ,x〉. +#a #b #p #f #x elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i+a x,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +(* the argument is 〈b-a,〈a,x〉〉 *) + +definition max_unary_pr ≝ λp,f.unary_pr (λx.0) + (λi. + let k ≝ fst i in + let r ≝ fst (snd i) in + let a ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + if p 〈k + a,x〉 then max (f 〈k+a,x〉) r else r). + +lemma max_unary_pr1: ∀a,b,p,f,x. + max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉) = + ((max_unary_pr p f) ∘ (λx.〈b x - a x,〈a x,x〉〉)) x. +#a #b #p #f #x normalize >fst_pair >snd_pair @max_prim_rec1 +qed. + +definition aux_compl ≝ λhp,hf.λi. + let k ≝ fst i in  + let r ≝ fst (snd i) in  + let a ≝ fst (snd (snd i)) in  + let x ≝ snd (snd (snd i)) in  + hp 〈k+a,x〉 + hf 〈k+a,x〉 + (* was MSC r*) MSC i . + +definition aux_compl1 ≝ λhp,hf.λi. + let k ≝ fst i in  + let r ≝ fst (snd i) in  + let a ≝ fst (snd (snd i)) in  + let x ≝ snd (snd (snd i)) in  + hp 〈k+a,x〉 + hf 〈k+a,x〉 + MSC r. + +lemma aux_compl1_def: ∀k,r,m,hp,hf. + aux_compl1 hp hf 〈k,〈r,m〉〉 = + let a ≝ fst m in  + let x ≝ snd m in  + hp 〈k+a,x〉 + hf 〈k+a,x〉 + MSC r. +#k #r #m #hp #hf normalize >fst_pair >snd_pair >snd_pair >fst_pair // +qed. + +lemma aux_compl1_def1: ∀k,r,a,x,hp,hf. + aux_compl1 hp hf 〈k,〈r,〈a,x〉〉〉 = hp 〈k+a,x〉 + hf 〈k+a,x〉 + MSC r. +#k #r #a #x #hp #hf normalize >fst_pair >snd_pair >snd_pair >fst_pair +>fst_pair >snd_pair // +qed. + +axiom Oaux_compl: ∀hp,hf. O (aux_compl1 hp hf) (aux_compl hp hf). + +lemma MSC_max: ∀f,h,x. CF h f → MSC (max_{i < x}(f i)) ≤ max_{i < x}(h i). +#f #h #x #hf elim x // #i #Hind >bigop_Strue [|//] >bigop_Strue [|//] +whd in match (max ??); +cases (true_or_false (leb (f i) (bigop i (λi0:ℕ.true) ? 0 max(λi0:ℕ.f i0)))) +#Hcase >Hcase + [@(transitive_le … Hind) @le_maxr // + |@(transitive_le … (MSC_out … hf i)) @le_maxl // + ] +qed. + +lemma CF_max: ∀a,b.∀p:nat →bool.∀f,ha,hb,hp,hf,s. + CF ha a → CF hb b → CF hp p → CF hf f → + O s (λx.ha x + hb x + + (∑_{i ∈[a x ,b x[ } + (hp 〈i,x〉 + hf 〈i,x〉 + max_{i ∈ [a x, b x [ }(hf 〈i,x〉)))) → + CF s (λx.max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉)). +#a #b #p #f #ha #hb #hp #hf #s #CFa #CFb #CFp #CFf #HO +@ext_CF1 [|#x @max_unary_pr1] +@(CF_comp ??? (λx.ha x + hb x)) + [|@CF_comp_pair + [@CF_minus [@(O_to_CF … CFb) @O_plus_r // |@(O_to_CF … CFa) @O_plus_l //] + |@CF_comp_pair + [@(O_to_CF … CFa) @O_plus_l // + | @(O_to_CF … CF_id) @O_plus_r @le_to_O @(MSC_in … CFb) + ] + ] + |@(CF_prim_rec … MSC … (aux_compl1 hp hf)) + [@CF_const + |@(O_to_CF … (Oaux_compl … )) + @CF_if + [@(CF_comp p … MSC … CFp) + [@CF_comp_pair + [@CF_plus [@CF_fst| @CF_comp_fst @CF_comp_snd @CF_snd] + |@CF_comp_snd @CF_comp_snd @CF_snd] + |@le_to_O #x normalize >commutative_plus >associative_plus @le_plus // + ] + |@CF_max1 + [@(CF_comp f … MSC … CFf) + [@CF_comp_pair + [@CF_plus [@CF_fst| @CF_comp_fst @CF_comp_snd @CF_snd] + |@CF_comp_snd @CF_comp_snd @CF_snd] + |@le_to_O #x normalize >commutative_plus // + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@O_refl + ] + |@(O_trans … HO) -HO + @(O_trans ? (λx:ℕ + .ha x+hb x + +bigop (b x-a x) (λi:ℕ.true) ? (MSC 〈a x,x〉) plus + (λi:ℕ + .(λi0:ℕ + .hp 〈i0,x〉+hf 〈i0,x〉 + +bigop (b x-a x) (λi1:ℕ.true) ? 0 max + (λi1:ℕ.(λi2:ℕ.hf 〈i2,x〉) (i1+a x))) (i+a x)))) + [ + @le_to_O #n @le_plus // whd in match (unary_pr ???); + >fst_pair >snd_pair >bigop_prim_rec elim (b n - a n) + [normalize // + |#x #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >aux_compl1_def1 + >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >fst_pair + >snd_pair normalize in ⊢ (??%); >commutative_plus @le_plus + [-Hind @le_plus // normalize >fst_pair >snd_pair + @(transitive_le ? (bigop x (λi1:ℕ.true) ? 0 (λn0:ℕ.λm:ℕ.if leb n0 m then m else n0 ) + (λi1:ℕ.hf 〈i1+a n,n〉))) + [elim x [normalize @MSC_le] + #x0 #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >snd_pair + >fst_pair >fst_pair cases (p 〈x0+a n,n〉) normalize + [cases (true_or_false (leb (f 〈x0+a n,n〉) + (prim_rec (λx00:ℕ.O) + (λi:ℕ + .if p 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉  + then if leb (f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉) + (fst (snd i))  + then fst (snd i)  + else f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉   + else fst (snd i) ) x0 〈a n,n〉))) #Hcase >Hcase normalize + [@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + |@(transitive_le … (MSC_out … CFf …)) @(le_maxl … (le_n …)) + ] + |@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + ] + |@(le_maxr … (le_n …)) + ] + |@(transitive_le … Hind) -Hind + generalize in match (bigop x (λi:ℕ.true) ? 0 max + (λi1:ℕ.(λi2:ℕ.hf 〈i2,n〉) (i1+a n))); #c + generalize in match (hf 〈x+a n,n〉); #c1 + elim x [//] #x0 #Hind + >prim_rec_S >prim_rec_S normalize >fst_pair >fst_pair >snd_pair + >snd_pair >snd_pair >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair + >fst_pair @le_plus + [@le_plus // cases (true_or_false (leb c1 c)) #Hcase + >Hcase normalize // @lt_to_le @not_le_to_lt @(leb_false_to_not_le ?? Hcase) + |@Hind + ] + ] + ] + |@O_plus [@O_plus_l //] @le_to_O #x + Hind +cases (true_or_false (eqb a (a+i))) #Hcase >Hcase normalize // +<(eqb_true_to_eq … Hcase) >H // +qed. + +lemma my_minim_nfa : ∀a,f,x,k. f〈a,x〉 = false → +my_minim a f x (S k) = my_minim (S a) f x k. +#a #f #x #k #H elim k + [normalize H >eq_to_eqb_true // + |#i #Hind >my_minim_S >Hind >my_minim_S Hcase + [>(my_minim_fa … Hcase) // | >Hind @sym_eq @(my_minim_nfa … Hcase) ] +qed. + +(* cambiare qui: togliere S *) + + +definition minim_unary_pr ≝ λf.unary_pr (λx.S(fst x)) + (λi. + let k ≝ fst i in + let r ≝ fst (snd i) in + let b ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + if f 〈b-k,x〉 then b-k else r). + +definition compl_minim_unary ≝ λhf:nat → nat.λi. + let k ≝ fst i in + let b ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + hf 〈b-k,x〉 + MSC 〈k,〈S b,x〉〉. + +definition compl_minim_unary_aux ≝ λhf,i. + let k ≝ fst i in + let r ≝ fst (snd i) in + let b ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + hf 〈b-k,x〉 + MSC i. + +lemma compl_minim_unary_aux_def : ∀hf,k,r,b,x. + compl_minim_unary_aux hf 〈k,〈r,〈b,x〉〉〉 = hf 〈b-k,x〉 + MSC 〈k,〈r,〈b,x〉〉〉. +#hf #k #r #b #x normalize >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair // +qed. + +lemma compl_minim_unary_def : ∀hf,k,r,b,x. + compl_minim_unary hf 〈k,〈r,〈b,x〉〉〉 = hf 〈b-k,x〉 + MSC 〈k,〈S b,x〉〉. +#hf #k #r #b #x normalize >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair // +qed. + +lemma compl_minim_unary_aux_def2 : ∀hf,k,r,x. + compl_minim_unary_aux hf 〈k,〈r,x〉〉 = hf 〈fst x-k,snd x〉 + MSC 〈k,〈r,x〉〉. +#hf #k #r #x normalize >snd_pair >snd_pair >fst_pair // +qed. + +lemma compl_minim_unary_def2 : ∀hf,k,r,x. + compl_minim_unary hf 〈k,〈r,x〉〉 = hf 〈fst x-k,snd x〉 + MSC 〈k,〈S(fst x),snd x〉〉. +#hf #k #r #x normalize >snd_pair >snd_pair >fst_pair // +qed. + +lemma min_aux: ∀a,f,x,k. min (S k) (a x) (λi:ℕ.f 〈i,x〉) = + ((minim_unary_pr f) ∘ (λx.〈S k,〈a x + k,x〉〉)) x. +#a #f #x #k whd in ⊢ (???%); >fst_pair >snd_pair +lapply a -a (* @max_prim_rec1 *) +elim k + [normalize #a >fst_pair >snd_pair >fst_pair >snd_pair >snd_pair >fst_pair + fst_pair // + |#i #Hind #a normalize in ⊢ (??%?); >prim_rec_S >fst_pair >snd_pair + >fst_pair >snd_pair >snd_pair >fst_pair minus_S_S <(minus_plus_m_m (a x) i) // +qed. + +lemma minim_unary_pr1: ∀a,b,f,x. + μ_{i ∈[a x,b x]}(f 〈i,x〉) = + if leb (a x) (b x) then ((minim_unary_pr f) ∘ (λx.〈S (b x) - a x,〈b x,x〉〉)) x + else (a x). +#a #b #f #x cases (true_or_false (leb (a x) (b x))) #Hcase >Hcase + [cut (b x = a x + (b x - a x)) + [>commutative_plus minus_Sn_m [|@leb_true_to_le //] + >min_aux whd in ⊢ (??%?); eq_minus_O // @not_le_to_lt @leb_false_to_not_le // + ] +qed. + +axiom sum_inv: ∀a,b,f.∑_{i ∈ [a,S b[ }(f i) = ∑_{i ∈ [a,S b[ }(f (a + b - i)). + +(* +#a #b #f @(bigop_iso … plusAC) whd %{(λi.b - a - i)} %{(λi.b - a -i)} % + [%[#i #lti #_ normalize @eq_f >commutative_plus commutative_plus // + ] + |@(O_to_CF … MSC) + [@le_to_O #x normalize // + |@CF_minus + [@CF_comp_fst @CF_comp_snd @CF_snd |@CF_fst] + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@O_plus + [@O_plus_l @O_refl + |@O_plus_r @O_ext2 [||#x >compl_minim_unary_aux_def2 @refl] + @O_trans [||@le_to_O #x >compl_minim_unary_def2 @le_n] + @O_plus [@O_plus_l //] + @O_plus_r + @O_trans [|@le_to_O #x @MSC_pair] @O_plus + [@le_to_O #x @monotonic_MSC @(transitive_le ???? (le_fst …)) + >fst_pair @le_n] + @O_trans [|@le_to_O #x @MSC_pair] @O_plus + [@le_to_O #x @monotonic_MSC @(transitive_le ???? (le_snd …)) + >snd_pair @(transitive_le ???? (le_fst …)) >fst_pair + normalize >snd_pair >fst_pair lapply (surj_pair x) + * #x1 * #x2 #Hx >Hx >fst_pair >snd_pair elim x1 // + #i #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >fst_pair + cases (f ?) [@le_S // | //]] + @le_to_O #x @monotonic_MSC @(transitive_le ???? (le_snd …)) >snd_pair + >(expand_pair (snd (snd x))) in ⊢ (?%?); @le_pair // + ] + ] + |cut (O s (λx.ha x + hb x + + ∑_{i ∈[a x ,S(b x)[ }(hf 〈a x+b x-i,x〉 + MSC 〈b x -(a x+b x-i),〈S(b x),x〉〉))) + [@(O_ext2 … HO) #x @eq_f @sum_inv] -HO #HO + @(O_trans … HO) -HO + @(O_trans ? (λx:ℕ.ha x+hb x + +bigop (S(b x)-a x) (λi:ℕ.true) ? + (MSC 〈b x,x〉) plus (λi:ℕ.(λj.hf j + MSC 〈b x - fst j,〈S(b (snd j)),snd j〉〉) 〈b x- i,x〉))) + [@le_to_O #n @le_plus // whd in match (unary_pr ???); + >fst_pair >snd_pair >(bigop_prim_rec_dec1 a b ? (λi.true)) + (* it is crucial to recall that the index is bound by S(b x) *) + cut (S (b n) - a n ≤ S (b n)) [//] + elim (S(b n) - a n) + [normalize // + |#x #Hind #lex >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair + >compl_minim_unary_def >prim_rec_S >fst_pair >snd_pair >fst_pair + >snd_pair >fst_pair >snd_pair >fst_pair whd in ⊢ (??%); >commutative_plus + @le_plus [2:@Hind @le_S @le_S_S_to_le @lex] -Hind >snd_pair + >minus_minus_associative // @le_S_S_to_le // + ] + |@O_plus [@O_plus_l //] @O_ext2 [||#x @bigop_plus_c] + @O_plus + [@O_plus_l @O_trans [|@le_to_O #x @MSC_pair] + @O_plus + [@O_plus_r @le_to_O @(MSC_out … CFb) + |@O_plus_r @le_to_O @(MSC_in … CFb) + ] + |@O_plus_r @(O_ext2 … (O_refl …)) #x @same_bigop + [//|#i #H #_ @eq_f2 [@eq_f @eq_f2 //|>fst_pair @eq_f @eq_f2 //] + ] + ] + ] + ] + |@(O_to_CF … CFa) @(O_trans … HO) @O_plus_l @O_plus_l @O_refl + ] + +qed. + +lemma CF_mu2: ∀a,b.∀f:nat →bool.∀sa,sb,sf,s. + CF sa a → CF sb b → CF sf f → + O s (λx.sa x + sb x + ∑_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉 + MSC〈S(b x),x〉)) → + CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). +#a #b #f #sa #sb #sf #s #CFa #CFb #CFf #HO +@(O_to_CF … HO (CF_mu … CFa CFb CFf ?)) @O_plus [@O_plus_l @O_refl] +@O_plus_r @O_ext2 [|| #x @(bigop_op … plusAC)] +@O_plus [@le_to_O #x @le_sigma //] +@(O_trans ? (λx.∑_{i ∈[a x ,S(b x)[ }(MSC(b x -i)+MSC 〈S(b x),x〉))) + [@le_to_O #x @le_sigma //] +@O_ext2 [|| #x @(bigop_op … plusAC)] @O_plus + [@le_to_O #x @le_sigma // #i #lti #_ @(transitive_le … (MSC 〈S (b x),x〉)) // + @monotonic_MSC @(transitive_le … (S(b x))) // @le_S // + |@le_to_O #x @le_sigma // + ] +qed. + +(* uses MSC_S *) + +lemma CF_mu3: ∀a,b.∀f:nat →bool.∀sa,sb,sf,s. (∀x.sf x > 0) → + CF sa a → CF sb b → CF sf f → + O s (λx.sa x + sb x + ∑_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉 + MSC〈b x,x〉)) → + CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). +#a #b #f #sa #sb #sf #s #sfpos #CFa #CFb #CFf #HO +@(O_to_CF … HO (CF_mu2 … CFa CFb CFf ?)) @O_plus [@O_plus_l @O_refl] +@O_plus_r @O_ext2 [|| #x @(bigop_op … plusAC)] +@O_plus [@le_to_O #x @le_sigma //] +@le_to_O #x @le_sigma // #x #lti #_ >MSC_pair_eq >MSC_pair_eq 0) → + CF sa a → CF sb b → CF sf f → + O s (λx.sa x + sb x + (S(b x) - a x)*Max_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉)) → + CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). +#a #b #f #sa #sb #sf #s #sfpos #CFa #CFb #CFf #HO +@(O_to_CF … HO (CF_mu3 … sfpos CFa CFb CFf ?)) @O_plus [@O_plus_l @O_refl] +@O_ext2 [|| #x @(bigop_op … plusAC)] @O_plus_r @O_plus + [@le_to_O #x @sigma_to_Max + |lapply (MSC_in … CFf) #Hle + %{1} %{0} #n #_ @(transitive_le … (sigma_const …)) + >(commutative_times 1) (eq_minus_O … H) // + |lapply (le_S_S_to_le … (not_le_to_lt … H)) -H #H + @le_times // @(transitive_le … (Hle … )) + cut (b n = b n - a n + a n) [Hcut in ⊢ (?%?); @(le_Max (λi.sf 〈i+a n,n〉)) /2/ + ] + ] +qed. + +(* +axiom CF_mu: ∀a,b.∀f:nat →bool.∀sa,sb,sf,s. + CF sa a → CF sb b → CF sf f → + O s (λx.sa x + sb x + ∑_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉)) → + CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). *) + + + \ No newline at end of file diff --git a/matita/matita/lib/reverse_complexity/complexity.ma b/matita/matita/lib/reverse_complexity/complexity.ma new file mode 100644 index 000000000..ae7baceca --- /dev/null +++ b/matita/matita/lib/reverse_complexity/complexity.ma @@ -0,0 +1,290 @@ +include "reverse_complexity/basics.ma". +include "reverse_complexity/big_O.ma". + +(********************************* complexity *********************************) + +(* We assume operations have a minimal structural complexity MSC. +For instance, for time complexity, MSC is equal to the size of input. +For space complexity, MSC is typically 0, since we only measure the space +required in addition to dimension of the input. *) + +axiom MSC : nat → nat. +axiom MSC_sublinear : ∀n. MSC (S n) ≤ S (MSC n). +(* axiom MSC_S: O MSC (λx.MSC (S x)) . *) +axiom MSC_le: ∀n. MSC n ≤ n. + +axiom monotonic_MSC: monotonic ? le MSC. +axiom MSC_pair_eq: ∀a,b. MSC 〈a,b〉 = MSC a + MSC b. + + +lemma MSC_pair: ∀a,b. MSC 〈a,b〉 ≤ MSC a + MSC b. // qed. + +(* C s i means i is running in O(s) *) + +definition C ≝ λs,i.∃c.∃a.∀x.a ≤ x → ∃y. + U i x (c*(s x)) = Some ? y. + +(* C f s means f ∈ O(s) where MSC ∈O(s) *) +definition CF ≝ λs,f.∃i.code_for (total f) i ∧ C s i. + +axiom MSC_in: ∀f,h. CF h f → ∀x. MSC x ≤ h x. +axiom MSC_out: ∀f,h. CF h f → ∀x. MSC (f x) ≤ h x. + + +lemma ext_CF : ∀f,g,s. (∀n. f n = g n) → CF s f → CF s g. +#f #g #s #Hext * #i * #Hcode #HC %{i} % + [#x cases (Hcode x) #a #H %{a} whd in match (total ??); Hext @H | //] +qed. + +lemma monotonic_CF: ∀s1,s2,f.(∀x. s1 x ≤ s2 x) → CF s1 f → CF s2 f. +#s1 #s2 #f #H * #i * #Hcode #Hs1 +%{i} % [//] cases Hs1 #c * #a -Hs1 #Hs1 %{c} %{a} #n #lean +cases(Hs1 n lean) #y #Hy %{y} @(monotonic_U …Hy) @le_times // +qed. + +lemma O_to_CF: ∀s1,s2,f.O s2 s1 → CF s1 f → CF s2 f. +#s1 #s2 #f #H * #i * #Hcode #Hs1 +%{i} % [//] cases Hs1 #c * #a -Hs1 #Hs1 +cases H #c1 * #a1 #Ha1 %{(c*c1)} %{(a+a1)} #n #lean +cases(Hs1 n ?) [2:@(transitive_le … lean) //] #y #Hy %{y} @(monotonic_U …Hy) +>associative_times @le_times // @Ha1 @(transitive_le … lean) // +qed. + +lemma timesc_CF: ∀s,f,c.CF (λx.c*s x) f → CF s f. +#s #f #c @O_to_CF @O_times_c +qed. + +(********************************* composition ********************************) +axiom CF_comp: ∀f,g,sf,sg,sh. CF sg g → CF sf f → + O sh (λx. sg x + sf (g x)) → CF sh (f ∘ g). + +lemma CF_comp_ext: ∀f,g,h,sh,sf,sg. CF sg g → CF sf f → + (∀x.f(g x) = h x) → O sh (λx. sg x + sf (g x)) → CF sh h. +#f #g #h #sh #sf #sg #Hg #Hf #Heq #H @(ext_CF (f ∘ g)) + [#n normalize @Heq | @(CF_comp … H) //] +qed. + +(************************************* smn ************************************) +axiom smn: ∀f,s. CF s f → ∀x. CF (λy.s 〈x,y〉) (λy.f 〈x,y〉). + +(****************************** constructibility ******************************) + +definition constructible ≝ λs. CF s s. + +lemma constr_comp : ∀s1,s2. constructible s1 → constructible s2 → + (∀x. x ≤ s2 x) → constructible (s2 ∘ s1). +#s1 #s2 #Hs1 #Hs2 #Hle @(CF_comp … Hs1 Hs2) @O_plus @le_to_O #x [@Hle | //] +qed. + +lemma ext_constr: ∀s1,s2. (∀x.s1 x = s2 x) → + constructible s1 → constructible s2. +#s1 #s2 #Hext #Hs1 @(ext_CF … Hext) @(monotonic_CF … Hs1) #x >Hext // +qed. + + +(***************************** primitive recursion ****************************) + +(* no arguments *) + +let rec prim_rec0 (k:nat) (h:nat →nat) n on n ≝ + match n with + [ O ⇒ k + | S a ⇒ h 〈a, prim_rec0 k h a〉]. + +lemma prim_rec0_S: ∀k,h,n. + prim_rec0 k h (S n) = h 〈n, prim_rec0 k h n〉. +// qed. + +let rec prim_rec0_compl (k,sk:nat) (h,sh:nat →nat) n on n ≝ + match n with + [ O ⇒ sk + | S a ⇒ prim_rec0_compl k sk h sh a + sh (prim_rec0 k h a)]. + +axiom CF_prim_rec0_gen: ∀k,h,sk,sh,sh1,sf. CF sh h → + O sh1 (λx.snd x + sh 〈fst x,prim_rec0 k h (fst x)〉) → + O sf (prim_rec0 sk sh1) → + CF sf (prim_rec0 k h). + +lemma CF_prim_rec0: ∀k,h,sk,sh,sf. CF sh h → + O sf (prim_rec0 sk (λx. snd x + sh 〈fst x,prim_rec0 k h (fst x)〉)) + → CF sf (prim_rec0 k h). +#k #h #sk #sh #sf #Hh #HO @(CF_prim_rec0_gen … Hh … HO) @O_refl +qed. + +(* with arguments. m is a vector of arguments *) +let rec prim_rec (k,h:nat →nat) n m on n ≝ + match n with + [ O ⇒ k m + | S a ⇒ h 〈a,〈prim_rec k h a m, m〉〉]. + +lemma prim_rec_S: ∀k,h,n,m. + prim_rec k h (S n) m = h 〈n,〈prim_rec k h n m, m〉〉. +// qed. + +lemma prim_rec_le: ∀k1,k2,h1,h2. (∀x.k1 x ≤ k2 x) → +(∀x,y.x ≤y → h1 x ≤ h2 y) → + ∀x,m. prim_rec k1 h1 x m ≤ prim_rec k2 h2 x m. +#k1 #k2 #h1 #h2 #lek #leh #x #m elim x // +#n #Hind normalize @leh @le_pair // @le_pair // +qed. + +definition unary_pr ≝ λk,h,x. prim_rec k h (fst x) (snd x). + +lemma prim_rec_unary: ∀k,h,a,b. + prim_rec k h a b = unary_pr k h 〈a,b〉. +#k #h #a #b normalize >fst_pair >snd_pair // +qed. + +let rec prim_rec_compl (k,h,sk,sh:nat →nat) n m on n ≝ + match n with + [ O ⇒ sk m + | S a ⇒ prim_rec_compl k h sk sh a m + sh 〈a,〈prim_rec k h a m,m〉〉]. + +axiom CF_prim_rec_gen: ∀k,h,sk,sh,sh1. CF sk k → CF sh h → + O sh1 (λx. fst (snd x) + + sh 〈fst x,〈unary_pr k h 〈fst x,snd (snd x)〉,snd (snd x)〉〉) → + CF (unary_pr sk sh1) (unary_pr k h). + +lemma CF_prim_rec: ∀k,h,sk,sh,sf. CF sk k → CF sh h → + O sf (unary_pr sk + (λx. fst (snd x) + + sh 〈fst x,〈unary_pr k h 〈fst x,snd (snd x)〉,snd (snd x)〉〉)) + → CF sf (unary_pr k h). +#k #h #sk #sh #sf #Hk #Hh #Osf @(O_to_CF … Osf) @(CF_prim_rec_gen … Hk Hh) +@O_refl +qed. + +lemma constr_prim_rec: ∀s1,s2. constructible s1 → constructible s2 → + (∀n,r,m. 2 * r ≤ s2 〈n,〈r,m〉〉) → constructible (unary_pr s1 s2). +#s1 #s2 #Hs1 #Hs2 #Hincr @(CF_prim_rec … Hs1 Hs2) whd %{2} %{0} +#x #_ lapply (surj_pair x) * #a * #b #eqx >eqx whd in match (unary_pr ???); +>fst_pair >snd_pair +whd in match (unary_pr ???); >fst_pair >snd_pair elim a + [normalize // + |#n #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair + >prim_rec_S @transitive_le [| @(monotonic_le_plus_l … Hind)] + @transitive_le [| @(monotonic_le_plus_l … (Hincr n ? b))] + whd in match (unary_pr ???); >fst_pair >snd_pair // + ] +qed. + +(**************************** primitive operations*****************************) + +definition id ≝ λx:nat.x. + +axiom CF_id: CF MSC id. +axiom CF_const: ∀k.CF MSC (λx.k). +axiom CF_comp_fst: ∀h,f. CF h f → CF h (fst ∘ f). +axiom CF_comp_snd: ∀h,f. CF h f → CF h (snd ∘ f). +axiom CF_comp_pair: ∀h,f,g. CF h f → CF h g → CF h (λx. 〈f x,g x〉). + +lemma CF_fst: CF MSC fst. +@(ext_CF (fst ∘ id)) [#n //] @(CF_comp_fst … CF_id) +qed. + +lemma CF_snd: CF MSC snd. +@(ext_CF (snd ∘ id)) [#n //] @(CF_comp_snd … CF_id) +qed. + +(**************************** arithmetic operations ***************************) + +axiom CF_compS: ∀h,f. CF h f → CF h (S ∘ f). +axiom CF_le: ∀h,f,g. CF h f → CF h g → CF h (λx. leb (f x) (g x)). +axiom CF_eqb: ∀h,f,g. CF h f → CF h g → CF h (λx.eqb (f x) (g x)). +axiom CF_max1: ∀h,f,g. CF h f → CF h g → CF h (λx. max (f x) (g x)). +axiom CF_plus: ∀h,f,g. CF h f → CF h g → CF h (λx. f x + g x). +axiom CF_minus: ∀h,f,g. CF h f → CF h g → CF h (λx. f x - g x). + +(******************************** if then else ********************************) + +lemma if_prim_rec: ∀b:nat → bool. ∀f,g:nat → nat.∀x:nat. + if b x then f x else g x = prim_rec g (f ∘ snd ∘ snd) (b x) x. +#b #f #g #x cases (b x) normalize // +qed. + +lemma CF_if: ∀b:nat → bool. ∀f,g,s. CF s b → CF s f → CF s g → + CF s (λx. if b x then f x else g x). +#b #f #g #s #CFb #CFf #CFg @(ext_CF (λx.unary_pr g (f ∘ snd ∘ snd) 〈b x,x〉)) + [#n @sym_eq normalize >fst_pair >snd_pair @if_prim_rec + |@(CF_comp ??? s) + [|@CF_comp_pair // @(O_to_CF … CF_id) @le_to_O @MSC_in // + |@(CF_prim_rec_gen ??? (λx.MSC x + s(snd (snd x))) … CFg) [3:@O_refl|] + @(CF_comp … (λx.MSC x + s(snd x)) … CF_snd) + [@(CF_comp … s … CF_snd CFf) @O_refl + |@O_plus + [@O_plus_l @O_refl + |@O_plus + [@O_plus_l @le_to_O #x @monotonic_MSC // + |@O_plus_r @O_refl + ] + ] + ] + |%{6} %{0} #n #_ normalize in ⊢ (??%); snd_pair >fst_pair normalize + [@le_plus [//] >fst_pair >fst_pair >snd_pair >fst_pair + @le_plus [//] >snd_pair >snd_pair >snd_pair >snd_pair + associative_plus @le_plus + [@(transitive_le ???? (MSC_in … CFf n)) @monotonic_MSC // + |@(transitive_le … (MSC_pair …)) @le_plus [|@(MSC_in … CFf)] + normalize @MSC_out @CFg + ] + |@le_plus // + ] + ] + ] +qed. + +(********************************* simulation *********************************) + +definition pU_unary ≝ λp. pU (fst p) (fst (snd p)) (snd (snd p)). + +axiom sU : nat → nat. +axiom CF_U : CF sU pU_unary. + +axiom monotonic_sU: ∀i1,i2,x1,x2,s1,s2. i1 ≤ i2 → x1 ≤ x2 → s1 ≤ s2 → + sU 〈i1,〈x1,s1〉〉 ≤ sU 〈i2,〈x2,s2〉〉. + +lemma monotonic_sU_aux : ∀x1,x2. fst x1 ≤ fst x2 → fst (snd x1) ≤ fst (snd x2) → +snd (snd x1) ≤ snd (snd x2) → sU x1 ≤ sU x2. +#x1 #x2 cases (surj_pair x1) #a1 * #y #eqx1 >eqx1 -eqx1 cases (surj_pair y) +#b1 * #c1 #eqy >eqy -eqy +cases (surj_pair x2) #a2 * #y2 #eqx2 >eqx2 -eqx2 cases (surj_pair y2) +#b2 * #c2 #eqy2 >eqy2 -eqy2 >fst_pair >snd_pair >fst_pair >snd_pair +>fst_pair >snd_pair >fst_pair >snd_pair @monotonic_sU +qed. + +axiom sU_pos: ∀x. 0 < sU x. + +axiom sU_le: ∀i,x,s. s ≤ sU 〈i,〈x,s〉〉. + +lemma sU_le_i: ∀i,x,s. MSC i ≤ sU 〈i,〈x,s〉〉. +#i #x #s @(transitive_le ???? (MSC_in … CF_U 〈i,〈x,s〉〉)) @monotonic_MSC // +qed. + +lemma sU_le_x: ∀i,x,s. MSC x ≤ sU 〈i,〈x,s〉〉. +#i #x #s @(transitive_le ???? (MSC_in … CF_U 〈i,〈x,s〉〉)) @monotonic_MSC +@(transitive_le … 〈x,s〉) // +qed. + + + + +definition termb_unary ≝ λx:ℕ.termb (fst x) (fst (snd x)) (snd (snd x)). +definition out_unary ≝ λx:ℕ.out (fst x) (fst (snd x)) (snd (snd x)). + +lemma CF_termb: CF sU termb_unary. +@(ext_CF (fst ∘ pU_unary)) [2: @CF_comp_fst @CF_U] +#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >fst_pair % +qed. + +lemma CF_out: CF sU out_unary. +@(ext_CF (snd ∘ pU_unary)) [2: @CF_comp_snd @CF_U] +#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >snd_pair % +qed. + diff --git a/matita/matita/broken_lib/reverse_complexity/gap.ma b/matita/matita/lib/reverse_complexity/gap.ma similarity index 100% rename from matita/matita/broken_lib/reverse_complexity/gap.ma rename to matita/matita/lib/reverse_complexity/gap.ma diff --git a/matita/matita/broken_lib/reverse_complexity/hierarchy.ma b/matita/matita/lib/reverse_complexity/hierarchy.ma similarity index 75% rename from matita/matita/broken_lib/reverse_complexity/hierarchy.ma rename to matita/matita/lib/reverse_complexity/hierarchy.ma index f288e98ca..d833a5164 100644 --- a/matita/matita/broken_lib/reverse_complexity/hierarchy.ma +++ b/matita/matita/lib/reverse_complexity/hierarchy.ma @@ -1,10 +1,9 @@ include "arithmetics/nat.ma". -include "arithmetics/log.ma". -(* include "arithmetics/ord.ma". *) +include "arithmetics/log.ma". include "arithmetics/bigops.ma". include "arithmetics/bounded_quantifiers.ma". -include "arithmetics/pidgeon_hole.ma". +include "arithmetics/pidgeon_hole.ma". include "basics/sets.ma". include "basics/types.ma". @@ -118,21 +117,12 @@ lemma O_absorbr: ∀f,g,s. O s f → O f g → O s (f+g). #f #g #s #Osf #Ofg @(O_plus … Osf) @(O_trans … Osf) // qed. -(* -lemma O_ff: ∀f,s. O s f → O s (f+f). -#f #s #Osf /2/ -qed. *) - lemma O_ext2: ∀f,g,s. O s f → (∀x.f x = g x) → O s g. #f #g #s * #c * #a #Osf #eqfg %{c} %{a} #n #lean H normalize #H1 destruct //] -qed. - -lemma Some_to_halt: ∀n,i,y. U i n = Some ? y → u y = None ? . -#n elim n - [#i #y normalize #H destruct (H) - |#m #Hind #i #y normalize - cut (u i = None ? ∨ ∃c. u i = Some ? c) - [cases (u i) [/2/ | #c %2 /2/ ]] - *[#H >H normalize #H1 destruct (H1) // |* #c #H >H normalize @Hind ] - ] -qed. *) - axiom U: nat → nat → nat → option nat. -(* -lemma monotonici_U: ∀y,n,m,i. - U i m = Some ? y → U i (n+m) = Some ? y. -#y #n #m elim m - [#i normalize #H destruct - |#p #Hind #i H1 normalize // |* #c #H >H normalize #H1 @Hind //] - ] -qed. *) axiom monotonic_U: ∀i,x,n,m,y.n ≤m → U i x n = Some ? y → U i x m = Some ? y. -(* #i #n #m #y #lenm #H >(plus_minus_m_m m n) // @monotonici_U // -qed. *) - -(* axiom U: nat → nat → option nat. *) -(* axiom monotonic_U: ∀i,n,m,y.n ≤m → - U i n = Some ? y → U i m = Some ? y. *) lemma unique_U: ∀i,x,n,m,yn,ym. U i x n = Some ? yn → U i x m = Some ? ym → yn = ym. @@ -228,7 +172,7 @@ definition code_for ≝ λf,i.∀x. ∃n.∀m. n ≤ m → U i x m = f x. definition terminate ≝ λi,x,r. ∃y. U i x r = Some ? y. -notation "[i,x] ↓ r" with precedence 60 for @{terminate $i $x $r}. +notation "{i ⊙ x} ↓ r" with precedence 60 for @{terminate $i $x $r}. definition lang ≝ λi,x.∃r,y. U i x r = Some ? y ∧ 0 < y. @@ -262,11 +206,6 @@ lemma size_f_def: ∀f,n. size_f f n = Max_{i < S (of_size n) | eqb (|i|) n}|(f i)|. // qed. -(* -definition Max_const : ∀f,p,n,a. a < n → p a → - ∀n. f n = g n → - Max_{i < n | p n}(f n) = *) - lemma size_f_size : ∀f,n. size_f (f ∘ size) n = |(f n)|. #f #n @le_to_le_to_eq [@Max_le #a #lta #Ha normalize >(eqb_true_to_eq … Ha) // @@ -289,12 +228,9 @@ lemma size_f_fst : ∀n. size_f fst n ≤ n. #n @Max_le #a #lta #Ha <(eqb_true_to_eq … Ha) // qed. -(* definition def ≝ λf:nat → option nat.λx.∃y. f x = Some ? y.*) - (* C s i means that the complexity of i is O(s) *) -definition C ≝ λs,i.∃c.∃a.∀x.a ≤ |x| → ∃y. - U i x (c*(s(|x|))) = Some ? y. +definition C ≝ λs,i.∃c.∃a.∀x.a ≤ |x| → {i ⊙ x} ↓ (c*(s(|x|))). definition CF ≝ λs,f.∃i.code_for f i ∧ C s i. @@ -310,6 +246,18 @@ cases HCs1 #c2 * #b #H2 %{(c2*c1)} %{(max a b)} %{y} @(monotonic_U …Hy) >associative_times @le_times // @H @(le_maxl … Hmax) qed. +(*********************** The hierachy theorem (left) **************************) + +theorem hierarchy_theorem_left: ∀s1,s2:nat→nat. + O(s1) ⊆ O(s2) → CF s1 ⊆ CF s2. +#s1 #s2 #HO #f * #i * #Hcode * #c * #a #Hs1_i %{i} % // +cases (sub_O_to_O … HO) -HO #c1 * #b #Hs1s2 +%{(c*c1)} %{(max a b)} #x #lemax +cases (Hs1_i x ?) [2: @(le_maxl …lemax)] +#y #Hy %{y} @(monotonic_U … Hy) >associative_times +@le_times // @Hs1s2 @(le_maxr … lemax) +qed. + (************************** The diagonal language *****************************) (* the diagonal language used for the hierarchy theorem *) @@ -318,7 +266,7 @@ definition diag ≝ λs,i. U (fst i) i (s (|i|)) = Some ? 0. lemma equiv_diag: ∀s,i. - diag s i ↔ [fst i,i] ↓ s (|i|) ∧ ¬lang (fst i) i. + diag s i ↔ {fst i ⊙ i} ↓ s(|i|) ∧ ¬lang (fst i) i. #s #i % [whd in ⊢ (%→?); #H % [%{0} //] % * #x * #y * #H1 #Hy cut (0 = y) [@(unique_U … H H1)] #eqy /2/ @@ -360,7 +308,39 @@ lemma absurd1: ∀P. iff P (¬ P) →False. #H3 @(absurd ?? H3) @H2 @H3 qed. -(* axiom weak_pad : ∀a,∃a0.∀n. a0 < n → ∃b. |〈a,b〉| = n. *) +let rec f_img (f:nat →nat) n on n ≝ + match n with + [O ⇒ [ ] + |S m ⇒ f m::f_img f m + ]. + +(* a few lemma to prove injective_to_exists. This is a general result; a nice +example of the pidgeon hole pricniple *) + +lemma f_img_to_exists: + ∀f.∀n,a. a ∈ f_img f n → ∃b. b < n ∧ f b = a. +#f #n #a elim n normalize [@False_ind] +#m #Hind * + [#Ha %{m} /2/ |#H cases(Hind H) #b * #Hb #Ha %{b} % // @le_S //] +qed. + +lemma length_f_img: ∀f,n. |f_img f n| = n. +#f #n elim n // normalize // +qed. + +lemma unique_f_img: ∀f,n. injective … f → unique ? (f_img f n). +#f #n #Hinj elim n normalize // +#m #Hind % // % #H lapply(f_img_to_exists …H) * #b * #ltbm +#eqbm @(absurd … ltbm) @le_to_not_lt >(Hinj… eqbm) // +qed. + +lemma injective_to_exists: ∀f. injective nat nat f → + ∀n.(∀i.i < n → f i < n) → ∀a. a < n → ∃b. bcommutative_times size_f_size >size_of_size // ] -qed. - -(* -lemma diag_s: ∀s. minimal s → constructible s → - CF (λx.s x + sU x x (s x)) (diag_cf s). -#s * #Hs_id #Hs_c #Hs_constr -@ext_CF [2: #n @sym_eq @diag_cf_def | skip] -@IF_CF_new [2,3:@(monotonic_CF … (Hs_c ?)) @O_plus_l //] -@CFU_new - [@CF_fst @(monotonic_CF … Hs_id) @O_plus_l // - |@(monotonic_CF … Hs_id) @O_plus_l // - |@(monotonic_CF … Hs_constr) @O_plus_l // - |@O_plus_r %{1} %{0} #n #_ >commutative_times size_f_size >size_of_size // - ] -qed. *) - -(* proof with old axioms -lemma diag_s: ∀s. minimal s → constructible s → - CF (λx.s x + sU x x (s x)) (diag_cf s). -#s * #Hs_id #Hs_c #Hs_constr -@ext_CF [2: #n @sym_eq @diag_cf_def | skip] -@(monotonic_CF ???? (IF_CF (λi:ℕ.U (pair (fst i) i) (|of_size (s (|i|))|)) - … (λi.s i + s i + s i + (sU (size_f fst i) (size_f (λi.i) i) (size_f (λi.of_size (s (|i|))) i))) … (Hs_c 1) (Hs_c 0) … )) - [2: @CFU [@CF_fst // | // |@Hs_constr] - |@(O_ext2 (λn:ℕ.s n+sU (size_f fst n) n (s n) + (s n+s n+s n+s n))) - [2: #i >size_f_size >size_of_size >size_f_id //] - @O_absorbr - [%{1} %{0} #n #_ >commutative_times associative_times -@le_times // @Hs1s2 @(le_maxr … lemax) -qed. - +qed. \ No newline at end of file diff --git a/matita/matita/lib/reverse_complexity/sigma_diseq.ma b/matita/matita/lib/reverse_complexity/sigma_diseq.ma new file mode 100644 index 000000000..4356cd24e --- /dev/null +++ b/matita/matita/lib/reverse_complexity/sigma_diseq.ma @@ -0,0 +1,153 @@ +include "arithmetics/sigma_pi.ma". + +(************************* notation for minimization **************************) +notation "μ_{ ident i < n } p" + with precedence 80 for @{min $n 0 (λ${ident i}.$p)}. + +notation "μ_{ ident i ≤ n } p" + with precedence 80 for @{min (S $n) 0 (λ${ident i}.$p)}. + +notation "μ_{ ident i ∈ [a,b[ } p" + with precedence 80 for @{min ($b-$a) $a (λ${ident i}.$p)}. + +notation "μ_{ ident i ∈ [a,b] } p" + with precedence 80 for @{min (S $b-$a) $a (λ${ident i}.$p)}. + +(************************************ MAX *************************************) +notation "Max_{ ident i < n | p } f" + with precedence 80 +for @{'bigop $n max 0 (λ${ident i}. $p) (λ${ident i}. $f)}. + +notation "Max_{ ident i < n } f" + with precedence 80 +for @{'bigop $n max 0 (λ${ident i}.true) (λ${ident i}. $f)}. + +notation "Max_{ ident j ∈ [a,b[ } f" + with precedence 80 +for @{'bigop ($b-$a) max 0 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +notation "Max_{ ident j ∈ [a,b[ | p } f" + with precedence 80 +for @{'bigop ($b-$a) max 0 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +lemma Max_assoc: ∀a,b,c. max (max a b) c = max a (max b c). +#a #b #c normalize cases (true_or_false (leb a b)) #leab >leab normalize + [cases (true_or_false (leb b c )) #lebc >lebc normalize + [>(le_to_leb_true a c) // @(transitive_le ? b) @leb_true_to_le // + |>leab // + ] + |cases (true_or_false (leb b c )) #lebc >lebc normalize // + >leab normalize >(not_le_to_leb_false a c) // @lt_to_not_le + @(transitive_lt ? b) @not_le_to_lt @leb_false_to_not_le // + ] +qed. + +lemma Max0 : ∀n. max 0 n = n. +// qed. + +lemma Max0r : ∀n. max n 0 = n. +#n >commutative_max // +qed. + +definition MaxA ≝ + mk_Aop nat 0 max Max0 Max0r (λa,b,c.sym_eq … (Max_assoc a b c)). + +definition MaxAC ≝ mk_ACop nat 0 MaxA commutative_max. + +lemma le_Max: ∀f,p,n,a. a < n → p a = true → + f a ≤ Max_{i < n | p i}(f i). +#f #p #n #a #ltan #pa +>(bigop_diff p ? 0 MaxAC f a n) // @(le_maxl … (le_n ?)) +qed. + +lemma le_MaxI: ∀f,p,n,m,a. m ≤ a → a < n → p a = true → + f a ≤ Max_{i ∈ [m,n[ | p i}(f i). +#f #p #n #m #a #lema #ltan #pa +>(bigop_diff ? ? 0 MaxAC (λi.f (i+m)) (a-m) (n-m)) + [bigop_Strue [2:@Hb] @to_max [@H1 // | @H #a #ltab #pa @H1 // @le_S //] + |>bigop_Sfalse [2:@Hb] @H #a #ltab #pa @H1 // @le_S // + ] +qed. + + +(************************* a couple of technical lemmas ***********************) +lemma minus_to_0: ∀a,b. a ≤ b → minus a b = 0. +#a elim a // #n #Hind * + [#H @False_ind /2 by absurd/ | #b normalize #H @Hind @le_S_S_to_le /2/] +qed. + +lemma sigma_const: ∀c,a,b. + ∑_{i ∈ [a,b[ }c ≤ (b-a)*c. +#c #a #b elim (b-a) // #n #Hind normalize @le_plus // +qed. + +lemma sigma_to_Max: ∀h,a,b. + ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*Max_{i ∈ [a,b[ }(h i). +#h #a #b elim (b-a) + [// + |#n #Hind >bigop_Strue [2://] whd in ⊢ (??%); + @le_plus + [>bigop_Strue // @(le_maxl … (le_n …)) + |@(transitive_le … Hind) @le_times // >bigop_Strue // + @(le_maxr … (le_n …)) + ] + ] +qed. + +lemma sigma_bound1: ∀h,a,b. monotonic nat le h → + ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*h b. +#h #a #b #H +@(transitive_le … (sigma_to_Max …)) @le_times // +@Max_le #i #lti #_ @H @lt_to_le @lt_minus_to_plus_r // +qed. + +lemma sigma_bound_decr1: ∀h,a,b. (∀a1,a2. a1 ≤ a2 → a2 < b → h a2 ≤ h a1) → + ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*h a. +#h #a #b #H +@(transitive_le … (sigma_to_Max …)) @le_times // +@Max_le #i #lti #_ @H // @lt_minus_to_plus_r // +qed. + +lemma sigma_bound: ∀h,a,b. monotonic nat le h → + ∑_{i ∈ [a,S b[ }(h i) ≤ (S b-a)*h b. +#h #a #b #H cases (decidable_le a b) + [#leab cut (b = pred (S b - a + a)) + [Hb in match (h b); + generalize in match (S b -a); + #n elim n + [// + |#m #Hind >bigop_Strue [2://] @le_plus + [@H @le_n |@(transitive_le … Hind) @le_times [//] @H //] + ] + |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba + cut (S b -a = 0) [@minus_to_0 //] #Hcut >Hcut // + ] +qed. + +lemma sigma_bound_decr: ∀h,a,b. (∀a1,a2. a1 ≤ a2 → a2 < b → h a2 ≤ h a1) → + ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*h a. +#h #a #b #H cases (decidable_le a b) + [#leab cut ((b -a) +a ≤ b) [/2 by le_minus_to_plus_r/] generalize in match (b -a); + #n elim n + [// + |#m #Hind >bigop_Strue [2://] #Hm + cut (m+a ≤ b) [@(transitive_le … Hm) //] #Hm1 + @le_plus [@H // |@(transitive_le … (Hind Hm1)) //] + ] + |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba + cut (b -a = 0) [@minus_to_0 @lt_to_le @ltba] #Hcut >Hcut // + ] +qed. + \ No newline at end of file diff --git a/matita/matita/broken_lib/reverse_complexity/speed_clean.ma b/matita/matita/lib/reverse_complexity/speed_clean.ma similarity index 100% rename from matita/matita/broken_lib/reverse_complexity/speed_clean.ma rename to matita/matita/lib/reverse_complexity/speed_clean.ma diff --git a/matita/matita/broken_lib/reverse_complexity/speed_def.ma b/matita/matita/lib/reverse_complexity/speed_def.ma similarity index 100% rename from matita/matita/broken_lib/reverse_complexity/speed_def.ma rename to matita/matita/lib/reverse_complexity/speed_def.ma diff --git a/matita/matita/broken_lib/reverse_complexity/speed_new.ma b/matita/matita/lib/reverse_complexity/speed_new.ma similarity index 100% rename from matita/matita/broken_lib/reverse_complexity/speed_new.ma rename to matita/matita/lib/reverse_complexity/speed_new.ma diff --git a/matita/matita/broken_lib/reverse_complexity/toolkit.ma b/matita/matita/lib/reverse_complexity/speedup.ma similarity index 71% rename from matita/matita/broken_lib/reverse_complexity/toolkit.ma rename to matita/matita/lib/reverse_complexity/speedup.ma index 69fa3525a..12605c9e4 100644 --- a/matita/matita/broken_lib/reverse_complexity/toolkit.ma +++ b/matita/matita/lib/reverse_complexity/speedup.ma @@ -1,3 +1,5 @@ +(* +<<<<<<< HEAD:matita/matita/broken_lib/reverse_complexity/toolkit.ma include "basics/types.ma". include "arithmetics/minimization.ma". include "arithmetics/bigops.ma". @@ -181,6 +183,10 @@ qed. lemma snd_pU: ∀i,x,r. snd (pU i x r) = out i x r. #i #x #r normalize cases (U i x r) normalize >snd_pair // qed. +======= +include "reverse_complexity/bigops_compl.ma". +>>>>>>> reverse_complexity lib restored:matita/matita/lib/reverse_complexity/speedup.ma +*) (********************************* the speedup ********************************) @@ -282,7 +288,6 @@ lemma condition_1: ∀h,u.g h 0 ≈ g h u. qed. (******************************** Condition 2 *********************************) -definition total ≝ λf.λx:nat. Some nat (f x). lemma exists_to_exists_min: ∀h,i. (∃x. i < x ∧ {i ⊙ x} ↓ h (S i) x) → ∃y. min_input h i y = y. #h #i * #x * #ltix #Hx %{(min_input h i x)} @min_spec_to_min @found // @@ -301,200 +306,7 @@ whd in match (out ???); >termy >Hr #H @(absurd ? H) @le_to_not_lt @le_n qed. - -(********************************* complexity *********************************) - -(* We assume operations have a minimal structural complexity MSC. -For instance, for time complexity, MSC is equal to the size of input. -For space complexity, MSC is typically 0, since we only measure the -space required in addition to dimension of the input. *) - -axiom MSC : nat → nat. -axiom MSC_le: ∀n. MSC n ≤ n. -axiom monotonic_MSC: monotonic ? le MSC. -axiom MSC_pair: ∀a,b. MSC 〈a,b〉 ≤ MSC a + MSC b. - -(* C s i means i is running in O(s) *) - -definition C ≝ λs,i.∃c.∃a.∀x.a ≤ x → ∃y. - U i x (c*(s x)) = Some ? y. - -(* C f s means f ∈ O(s) where MSC ∈O(s) *) -definition CF ≝ λs,f.O s MSC ∧ ∃i.code_for (total f) i ∧ C s i. - -lemma ext_CF : ∀f,g,s. (∀n. f n = g n) → CF s f → CF s g. -#f #g #s #Hext * #HO * #i * #Hcode #HC % // %{i} % - [#x cases (Hcode x) #a #H %{a} whd in match (total ??); associative_times @le_times // @Ha1 @(transitive_le … lean) // - ] -qed. - -lemma timesc_CF: ∀s,f,c.CF (λx.c*s x) f → CF s f. -#s #f #c @O_to_CF @O_times_c -qed. - -(********************************* composition ********************************) -axiom CF_comp: ∀f,g,sf,sg,sh. CF sg g → CF sf f → - O sh (λx. sg x + sf (g x)) → CF sh (f ∘ g). - -lemma CF_comp_ext: ∀f,g,h,sh,sf,sg. CF sg g → CF sf f → - (∀x.f(g x) = h x) → O sh (λx. sg x + sf (g x)) → CF sh h. -#f #g #h #sh #sf #sg #Hg #Hf #Heq #H @(ext_CF (f ∘ g)) - [#n normalize @Heq | @(CF_comp … H) //] -qed. - -(* primitve recursion *) - -let rec prim_rec (k,h:nat →nat) n m on n ≝ - match n with - [ O ⇒ k m - | S a ⇒ h 〈a,〈prim_rec k h a m, m〉〉]. - -lemma prim_rec_S: ∀k,h,n,m. - prim_rec k h (S n) m = h 〈n,〈prim_rec k h n m, m〉〉. -// qed. - -definition unary_pr ≝ λk,h,x. prim_rec k h (fst x) (snd x). - -let rec prim_rec_compl (k,h,sk,sh:nat →nat) n m on n ≝ - match n with - [ O ⇒ sk m - | S a ⇒ prim_rec_compl k h sk sh a m + sh (prim_rec k h a m)]. - -axiom CF_prim_rec: ∀k,h,sk,sh,sf. CF sk k → CF sh h → - O sf (unary_pr sk (λx. fst (snd x) + sh 〈fst x,〈unary_pr k h 〈fst x,snd (snd x)〉,snd (snd x)〉〉)) - → CF sf (unary_pr k h). - -(* falso ???? -lemma prim_rec_O: ∀k1,h1,k2,h2. O k1 k2 → O h1 h2 → - O (unary_pr k1 h1) (unary_pr k2 h2). -#k1 #h1 #k2 #h2 #HO1 #HO2 whd *) - - -(**************************** primitive operations*****************************) - -definition id ≝ λx:nat.x. - -axiom CF_id: CF MSC id. -axiom CF_compS: ∀h,f. CF h f → CF h (S ∘ f). -axiom CF_comp_fst: ∀h,f. CF h f → CF h (fst ∘ f). -axiom CF_comp_snd: ∀h,f. CF h f → CF h (snd ∘ f). -axiom CF_comp_pair: ∀h,f,g. CF h f → CF h g → CF h (λx. 〈f x,g x〉). - -lemma CF_fst: CF MSC fst. -@(ext_CF (fst ∘ id)) [#n //] @(CF_comp_fst … CF_id) -qed. - -lemma CF_snd: CF MSC snd. -@(ext_CF (snd ∘ id)) [#n //] @(CF_comp_snd … CF_id) -qed. - -(************************************** eqb ***********************************) - -axiom CF_eqb: ∀h,f,g. - CF h f → CF h g → CF h (λx.eqb (f x) (g x)). - -(*********************************** maximum **********************************) - -axiom CF_max: ∀a,b.∀p:nat →bool.∀f,ha,hb,hp,hf,s. - CF ha a → CF hb b → CF hp p → CF hf f → - O s (λx.ha x + hb x + ∑_{i ∈[a x ,b x[ }(hp 〈i,x〉 + hf 〈i,x〉)) → - CF s (λx.max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉)). - -(******************************** minimization ********************************) - -axiom CF_mu: ∀a,b.∀f:nat →bool.∀sa,sb,sf,s. - CF sa a → CF sb b → CF sf f → - O s (λx.sa x + sb x + ∑_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉)) → - CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). - -(************************************* smn ************************************) -axiom smn: ∀f,s. CF s f → ∀x. CF (λy.s 〈x,y〉) (λy.f 〈x,y〉). - -(****************************** constructibility ******************************) - -definition constructible ≝ λs. CF s s. - -lemma constr_comp : ∀s1,s2. constructible s1 → constructible s2 → - (∀x. x ≤ s2 x) → constructible (s2 ∘ s1). -#s1 #s2 #Hs1 #Hs2 #Hle @(CF_comp … Hs1 Hs2) @O_plus @le_to_O #x [@Hle | //] -qed. - -lemma ext_constr: ∀s1,s2. (∀x.s1 x = s2 x) → - constructible s1 → constructible s2. -#s1 #s2 #Hext #Hs1 @(ext_CF … Hext) @(monotonic_CF … Hs1) #x >Hext // -qed. - -lemma constr_prim_rec: ∀s1,s2. constructible s1 → constructible s2 → - (∀n,r,m. 2 * r ≤ s2 〈n,〈r,m〉〉) → constructible (unary_pr s1 s2). -#s1 #s2 #Hs1 #Hs2 #Hincr @(CF_prim_rec … Hs1 Hs2) whd %{2} %{0} -#x #_ lapply (surj_pair x) * #a * #b #eqx >eqx whd in match (unary_pr ???); ->fst_pair >snd_pair -whd in match (unary_pr ???); >fst_pair >snd_pair elim a - [normalize // - |#n #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair - >prim_rec_S @transitive_le [| @(monotonic_le_plus_l … Hind)] - @transitive_le [| @(monotonic_le_plus_l … (Hincr n ? b))] - whd in match (unary_pr ???); >fst_pair >snd_pair // - ] -qed. - -(********************************* simulation *********************************) - -axiom sU : nat → nat. - -axiom monotonic_sU: ∀i1,i2,x1,x2,s1,s2. i1 ≤ i2 → x1 ≤ x2 → s1 ≤ s2 → - sU 〈i1,〈x1,s1〉〉 ≤ sU 〈i2,〈x2,s2〉〉. - -lemma monotonic_sU_aux : ∀x1,x2. fst x1 ≤ fst x2 → fst (snd x1) ≤ fst (snd x2) → -snd (snd x1) ≤ snd (snd x2) → sU x1 ≤ sU x2. -#x1 #x2 cases (surj_pair x1) #a1 * #y #eqx1 >eqx1 -eqx1 cases (surj_pair y) -#b1 * #c1 #eqy >eqy -eqy -cases (surj_pair x2) #a2 * #y2 #eqx2 >eqx2 -eqx2 cases (surj_pair y2) -#b2 * #c2 #eqy2 >eqy2 -eqy2 >fst_pair >snd_pair >fst_pair >snd_pair ->fst_pair >snd_pair >fst_pair >snd_pair @monotonic_sU -qed. - -axiom sU_le: ∀i,x,s. s ≤ sU 〈i,〈x,s〉〉. -axiom sU_le_i: ∀i,x,s. MSC i ≤ sU 〈i,〈x,s〉〉. -axiom sU_le_x: ∀i,x,s. MSC x ≤ sU 〈i,〈x,s〉〉. - -definition pU_unary ≝ λp. pU (fst p) (fst (snd p)) (snd (snd p)). - -axiom CF_U : CF sU pU_unary. - -definition termb_unary ≝ λx:ℕ.termb (fst x) (fst (snd x)) (snd (snd x)). -definition out_unary ≝ λx:ℕ.out (fst x) (fst (snd x)) (snd (snd x)). - -lemma CF_termb: CF sU termb_unary. -@(ext_CF (fst ∘ pU_unary)) [2: @CF_comp_fst @CF_U] -#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >fst_pair % -qed. - -lemma CF_out: CF sU out_unary. -@(ext_CF (snd ∘ pU_unary)) [2: @CF_comp_snd @CF_U] -#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >snd_pair % -qed. - - -(******************** complexity of g ********************) +(**************************** complexity of g *********************************) definition unary_g ≝ λh.λux. g h (fst ux) (snd ux). definition auxg ≝ @@ -519,18 +331,18 @@ lemma compl_g2 : ∀h,s1,s2,s. (λp:ℕ.eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))) → CF s2 (λp:ℕ.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p)))) → - O s (λx.MSC x + ∑_{i ∈[fst x ,snd x[ }(s1 〈i,x〉+s2 〈i,x〉)) → + O s (λx.MSC x + (snd x - fst x)*Max_{i ∈[fst x ,snd x[ }(s1 〈i,x〉+s2 〈i,x〉)) → CF s (auxg h). #h #s1 #s2 #s #Hs1 #Hs2 #HO @(ext_CF (aux1g h)) [#n whd in ⊢ (??%%); @eq_aux] -@(CF_max … CF_fst CF_snd Hs1 Hs2 …) @(O_trans … HO) +@(CF_max2 … CF_fst CF_snd Hs1 Hs2 …) @(O_trans … HO) @O_plus [@O_plus @O_plus_l // | @O_plus_r //] qed. lemma compl_g3 : ∀h,s. CF s (λp:ℕ.min_input h (fst p) (snd (snd p))) → CF s (λp:ℕ.eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))). -#h #s #H @(CF_eqb … H) @(CF_comp … CF_snd CF_snd) @(O_trans … (proj1 … H)) +#h #s #H @(CF_eqb … H) @(CF_comp … CF_snd CF_snd) @(O_trans … (le_to_O … (MSC_in … H))) @O_plus // %{1} %{0} #n #_ >commutative_times Hb in match (h b); - generalize in match (S b -a); - #n elim n - [// - |#m #Hind >bigop_Strue [2://] @le_plus - [@H @le_n |@(transitive_le … Hind) @le_times [//] @H //] - ] - |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba - cut (S b -a = 0) [@minus_to_0 //] #Hcut >Hcut // - ] -qed. - -lemma sigma_bound_decr: ∀h,a,b. (∀a1,a2. a1 ≤ a2 → a2 < b → h a2 ≤ h a1) → - ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*h a. -#h #a #b #H cases (decidable_le a b) - [#leab cut ((b -a) +a ≤ b) [/2 by le_minus_to_plus_r/] generalize in match (b -a); - #n elim n - [// - |#m #Hind >bigop_Strue [2://] #Hm - cut (m+a ≤ b) [@(transitive_le … Hm) //] #Hm1 - @le_plus [@H // |@(transitive_le … (Hind Hm1)) //] - ] - |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba - cut (b -a = 0) [@minus_to_0 @lt_to_le @ltba] #Hcut >Hcut // - ] -qed. +(* ??? *) lemma coroll: ∀s1:nat→nat. (∀n. monotonic ℕ le (λa:ℕ.s1 〈a,n〉)) → O (λx.(snd (snd x)-fst x)*(s1 〈snd (snd x),x〉)) @@ -611,15 +388,25 @@ O (λx.(snd x - fst x)*s1 〈fst x,x〉) (λx.∑_{i ∈[fst x,snd x[ }(s1 〈i, @(transitive_le … (sigma_bound_decr …)) [2://] @Hs1 qed. +lemma coroll3: ∀s1:nat→nat. (∀n,a,b. a ≤ b → b < snd n → s1 〈b,n〉 ≤ s1 〈a,n〉) → +O (λx.(snd x - fst x)*s1 〈fst x,x〉) + (λx.(snd x - fst x)*Max_{i ∈[fst x,snd x[ }(s1 〈i,x〉)). +#s1 #Hs1 @le_to_O #i @le_times // @Max_le #a #lta #_ @Hs1 // +@lt_minus_to_plus_r // +qed. + (**************************** end of technical lemmas *************************) -lemma compl_g5 : ∀h,s1.(∀n. monotonic ℕ le (λa:ℕ.s1 〈a,n〉)) → +lemma compl_g5 : ∀h,s1. + (∀n. 0 < s1 n) → + (∀n. monotonic ℕ le (λa:ℕ.s1 〈a,n〉)) → (CF s1 (λp.termb (fst (snd p)) (fst p) (h (S (fst (snd p))) (fst p)))) → CF (λx.MSC x + (snd (snd x)-fst x)*s1 〈snd (snd x),x〉) (λp:ℕ.min_input h (fst p) (snd (snd p))). -#h #s1 #Hmono #Hs1 @(compl_g4 … Hs1) @O_plus -[@O_plus_l // |@O_plus_r @coroll @Hmono] +#h #s1 #Hpos #Hmono #Hs1 @(compl_g4 … Hpos Hs1) @O_plus +[@O_plus_l // |@O_plus_r @le_to_O #n @le_times // +@Max_le #i #lti #_ @Hmono @le_S_S_to_le @lt_minus_to_plus_r @lti qed. lemma compl_g6: ∀h. @@ -683,7 +470,7 @@ lemma compl_g7: ∀h. (λp:ℕ.min_input h (fst p) (snd (snd p))). #h #hcostr #hmono @(monotonic_CF … (faux2 h)) [#n normalize >fst_pair >snd_pair //] -@compl_g5 [2:@(compl_g6 h hcostr)] #n #x #y #lexy >fst_pair >snd_pair +@compl_g5 [#n @sU_pos | 3:@(compl_g6 h hcostr)] #n #x #y #lexy >fst_pair >snd_pair >fst_pair >snd_pair @monotonic_sU // @hmono @lexy qed. @@ -751,7 +538,7 @@ lemma compl_g9 : ∀h. @O_plus [@O_plus_l @le_to_O #x >(times_n_1 (MSC x)) >commutative_times @le_times [// | @monotonic_MSC // ]] -@(O_trans … (coroll2 ??)) +@(O_trans … (coroll3 ??)) [#n #a #b #leab #ltb >fst_pair >fst_pair >snd_pair >snd_pair cut (b ≤ n) [@(transitive_le … (le_snd …)) @lt_to_le //] #lebn cut (max a n = n) @@ -772,15 +559,25 @@ lemma compl_g9 : ∀h. ] qed. +definition c ≝ λx.(S (snd x-fst x))*MSC 〈x,x〉. + definition sg ≝ λh,x. - (S (snd x-fst x))*MSC 〈x,x〉 + (snd x-fst x)*(S(snd x-fst x))*sU 〈x,〈snd x,h (S (fst x)) (snd x)〉〉. + let a ≝ fst x in + let b ≝ snd x in + c x + (b-a)*(S(b-a))*sU 〈x,〈snd x,h (S a) b〉〉. -lemma sg_def : ∀h,a,b. - sg h 〈a,b〉 = (S (b-a))*MSC 〈〈a,b〉,〈a,b〉〉 + +lemma sg_def1 : ∀h,a,b. + sg h 〈a,b〉 = c 〈a,b〉 + (b-a)*(S(b-a))*sU 〈〈a,b〉,〈b,h (S a) b〉〉. #h #a #b whd in ⊢ (??%?); >fst_pair >snd_pair // qed. +lemma sg_def : ∀h,a,b. + sg h 〈a,b〉 = + S (b-a)*MSC 〈〈a,b〉,〈a,b〉〉 + (b-a)*(S(b-a))*sU 〈〈a,b〉,〈b,h (S a) b〉〉. +#h #a #b normalize >fst_pair >snd_pair // +qed. + lemma compl_g11 : ∀h. constructible (λx. h (fst x) (snd x)) → (∀n. monotonic ? le (h n)) → @@ -807,31 +604,6 @@ lemma h_of_aux_S : ∀r,c,d,b. (S d)*(S (S d))*sU 〈〈b-(S d),b〉,〈b,r(h_of_aux r c d b)〉〉. // qed. -lemma h_of_aux_prim_rec : ∀r,c,n,b. h_of_aux r c n b = - prim_rec (λx.c) - (λx.let d ≝ S(fst x) in - let b ≝ snd (snd x) in - (S d)*(MSC 〈〈b-d,b〉,〈b-d,b〉〉) + - d*(S d)*sU 〈〈b-d,b〉,〈b,r (fst (snd x))〉〉) n b. -#r #c #n #b elim n - [>h_of_aux_O normalize // - |#n1 #Hind >h_of_aux_S >prim_rec_S >snd_pair >snd_pair >fst_pair - >fst_pair leab normalize + [cases (true_or_false (leb b c )) #lebc >lebc normalize + [>(le_to_leb_true a c) // @(transitive_le ? b) @leb_true_to_le // + |>leab // + ] + |cases (true_or_false (leb b c )) #lebc >lebc normalize // + >leab normalize >(not_le_to_leb_false a c) // @lt_to_not_le + @(transitive_lt ? b) @not_le_to_lt @leb_false_to_not_le // + ] +qed. + +lemma Max0 : ∀n. max 0 n = n. +// qed. + +lemma Max0r : ∀n. max n 0 = n. +#n >commutative_max // +qed. + +definition MaxA ≝ + mk_Aop nat 0 max Max0 Max0r (λa,b,c.sym_eq … (Max_assoc a b c)). + +definition MaxAC ≝ mk_ACop nat 0 MaxA commutative_max. + +lemma le_Max: ∀f,p,n,a. a < n → p a = true → + f a ≤ Max_{i < n | p i}(f i). +#f #p #n #a #ltan #pa +>(bigop_diff p ? 0 MaxAC f a n) // @(le_maxl … (le_n ?)) +qed. + +lemma le_MaxI: ∀f,p,n,m,a. m ≤ a → a < n → p a = true → + f a ≤ Max_{i ∈ [m,n[ | p i}(f i). +#f #p #n #m #a #lema #ltan #pa +>(bigop_diff ? ? 0 MaxAC (λi.f (i+m)) (a-m) (n-m)) + [bigop_Strue [2:@Hb] @to_max [@H1 // | @H #a #ltab #pa @H1 // @le_S //] + |>bigop_Sfalse [2:@Hb] @H #a #ltab #pa @H1 // @le_S // + ] +qed. + +(********************************** pairing ***********************************) +axiom pair: nat → nat → nat. +axiom fst : nat → nat. +axiom snd : nat → nat. + +interpretation "abstract pair" 'pair f g = (pair f g). + +axiom fst_pair: ∀a,b. fst 〈a,b〉 = a. +axiom snd_pair: ∀a,b. snd 〈a,b〉 = b. +axiom surj_pair: ∀x. ∃a,b. x = 〈a,b〉. + +axiom le_fst : ∀p. fst p ≤ p. +axiom le_snd : ∀p. snd p ≤ p. +axiom le_pair: ∀a,a1,b,b1. a ≤ a1 → b ≤ b1 → 〈a,b〉 ≤ 〈a1,b1〉. + +lemma expand_pair: ∀x. x = 〈fst x, snd x〉. +#x lapply (surj_pair x) * #a * #b #Hx >Hx >fst_pair >snd_pair // +qed. + +(************************************* U **************************************) +axiom U: nat → nat →nat → option nat. + +axiom monotonic_U: ∀i,x,n,m,y.n ≤m → + U i x n = Some ? y → U i x m = Some ? y. + +lemma unique_U: ∀i,x,n,m,yn,ym. + U i x n = Some ? yn → U i x m = Some ? ym → yn = ym. +#i #x #n #m #yn #ym #Hn #Hm cases (decidable_le n m) + [#lenm lapply (monotonic_U … lenm Hn) >Hm #HS destruct (HS) // + |#ltmn lapply (monotonic_U … n … Hm) [@lt_to_le @not_le_to_lt //] + >Hn #HS destruct (HS) // + ] +qed. + +definition code_for ≝ λf,i.∀x. + ∃n.∀m. n ≤ m → U i x m = f x. + +definition terminate ≝ λi,x,r. ∃y. U i x r = Some ? y. + +notation "{i ⊙ x} ↓ r" with precedence 60 for @{terminate $i $x $r}. + +lemma terminate_dec: ∀i,x,n. {i ⊙ x} ↓ n ∨ ¬ {i ⊙ x} ↓ n. +#i #x #n normalize cases (U i x n) + [%2 % * #y #H destruct|#y %1 %{y} //] +qed. + +lemma monotonic_terminate: ∀i,x,n,m. + n ≤ m → {i ⊙ x} ↓ n → {i ⊙ x} ↓ m. +#i #x #n #m #lenm * #z #H %{z} @(monotonic_U … H) // +qed. + +definition termb ≝ λi,x,t. + match U i x t with [None ⇒ false |Some y ⇒ true]. + +lemma termb_true_to_term: ∀i,x,t. termb i x t = true → {i ⊙ x} ↓ t. +#i #x #t normalize cases (U i x t) normalize [#H destruct | #y #_ %{y} //] +qed. + +lemma term_to_termb_true: ∀i,x,t. {i ⊙ x} ↓ t → termb i x t = true. +#i #x #t * #y #H normalize >H // +qed. + +definition out ≝ λi,x,r. + match U i x r with [ None ⇒ 0 | Some z ⇒ z]. + +definition bool_to_nat: bool → nat ≝ + λb. match b with [true ⇒ 1 | false ⇒ 0]. + +coercion bool_to_nat. + +definition pU : nat → nat → nat → nat ≝ λi,x,r.〈termb i x r,out i x r〉. + +lemma pU_vs_U_Some : ∀i,x,r,y. pU i x r = 〈1,y〉 ↔ U i x r = Some ? y. +#i #x #r #y % normalize + [cases (U i x r) normalize + [#H cut (0=1) [lapply (eq_f … fst … H) >fst_pair >fst_pair #H @H] + #H1 destruct + |#a #H cut (a=y) [lapply (eq_f … snd … H) >snd_pair >snd_pair #H1 @H1] + #H1 // + ] + |#H >H //] +qed. + +lemma pU_vs_U_None : ∀i,x,r. pU i x r = 〈0,0〉 ↔ U i x r = None ?. +#i #x #r % normalize + [cases (U i x r) normalize // + #a #H cut (1=0) [lapply (eq_f … fst … H) >fst_pair >fst_pair #H1 @H1] + #H1 destruct + |#H >H //] +qed. + +lemma fst_pU: ∀i,x,r. fst (pU i x r) = termb i x r. +#i #x #r normalize cases (U i x r) normalize >fst_pair // +qed. + +lemma snd_pU: ∀i,x,r. snd (pU i x r) = out i x r. +#i #x #r normalize cases (U i x r) normalize >snd_pair // +qed. + + +definition total ≝ λf.λx:nat. Some nat (f x). + + +(********************************* complexity *********************************) + +(* We assume operations have a minimal structural complexity MSC. +For instance, for time complexity, MSC is equal to the size of input. +For space complexity, MSC is typically 0, since we only measure the +space required in addition to dimension of the input. *) + +axiom MSC : nat → nat. +axiom MSC_le: ∀n. MSC n ≤ n. +axiom monotonic_MSC: monotonic ? le MSC. +axiom MSC_pair: ∀a,b. MSC 〈a,b〉 ≤ MSC a + MSC b. + +(* C s i means i is running in O(s) *) + +definition C ≝ λs,i.∃c.∃a.∀x.a ≤ x → ∃y. + U i x (c*(s x)) = Some ? y. + +(* C f s means f ∈ O(s) where MSC ∈O(s) *) +definition CF ≝ λs,f.O s MSC ∧ ∃i.code_for (total f) i ∧ C s i. + +lemma ext_CF : ∀f,g,s. (∀n. f n = g n) → CF s f → CF s g. +#f #g #s #Hext * #HO * #i * #Hcode #HC % // %{i} % + [#x cases (Hcode x) #a #H %{a} whd in match (total ??); Hext @H | //] +qed. + +lemma monotonic_CF: ∀s1,s2,f.(∀x. s1 x ≤ s2 x) → CF s1 f → CF s2 f. +#s1 #s2 #f #H * #HO * #i * #Hcode #Hs1 % + [cases HO #c * #a -HO #HO %{c} %{a} #n #lean @(transitive_le … (HO n lean)) + @le_times // + |%{i} % [//] cases Hs1 #c * #a -Hs1 #Hs1 %{c} %{a} #n #lean + cases(Hs1 n lean) #y #Hy %{y} @(monotonic_U …Hy) @le_times // + ] +qed. + +lemma O_to_CF: ∀s1,s2,f.O s2 s1 → CF s1 f → CF s2 f. +#s1 #s2 #f #H * #HO * #i * #Hcode #Hs1 % + [@(O_trans … H) // + |%{i} % [//] cases Hs1 #c * #a -Hs1 #Hs1 + cases H #c1 * #a1 #Ha1 %{(c*c1)} %{(a+a1)} #n #lean + cases(Hs1 n ?) [2:@(transitive_le … lean) //] #y #Hy %{y} @(monotonic_U …Hy) + >associative_times @le_times // @Ha1 @(transitive_le … lean) // + ] +qed. + +lemma timesc_CF: ∀s,f,c.CF (λx.c*s x) f → CF s f. +#s #f #c @O_to_CF @O_times_c +qed. + +(********************************* composition ********************************) +axiom CF_comp: ∀f,g,sf,sg,sh. CF sg g → CF sf f → + O sh (λx. sg x + sf (g x)) → CF sh (f ∘ g). + +lemma CF_comp_ext: ∀f,g,h,sh,sf,sg. CF sg g → CF sf f → + (∀x.f(g x) = h x) → O sh (λx. sg x + sf (g x)) → CF sh h. +#f #g #h #sh #sf #sg #Hg #Hf #Heq #H @(ext_CF (f ∘ g)) + [#n normalize @Heq | @(CF_comp … H) //] +qed. + +(* primitve recursion *) + +(* no arguments *) + +let rec prim_rec0 (k:nat) (h:nat →nat) n on n ≝ + match n with + [ O ⇒ k + | S a ⇒ h 〈a, prim_rec0 k h a〉]. + +lemma prim_rec0_S: ∀k,h,n. + prim_rec0 k h (S n) = h 〈n, prim_rec0 k h n〉. +// qed. + +let rec prim_rec0_compl (k,sk:nat) (h,sh:nat →nat) n on n ≝ + match n with + [ O ⇒ sk + | S a ⇒ prim_rec0_compl k sk h sh a + sh (prim_rec0 k h a)]. + +axiom CF_prim_rec0_gen: ∀k,h,sk,sh,sh1,sf. CF sh h → + O sh1 (λx.snd x + sh 〈fst x,prim_rec0 k h (fst x)〉) → + O sf (prim_rec0 sk sh1) → + CF sf (prim_rec0 k h). + +lemma CF_prim_rec0: ∀k,h,sk,sh,sf. CF sh h → + O sf (prim_rec0 sk (λx. snd x + sh 〈fst x,prim_rec0 k h (fst x)〉)) + → CF sf (prim_rec0 k h). +#k #h #sk #sh #sf #Hh #HO @(CF_prim_rec0_gen … Hh … HO) @O_refl +qed. + +(* with argument(s) m *) +let rec prim_rec (k,h:nat →nat) n m on n ≝ + match n with + [ O ⇒ k m + | S a ⇒ h 〈a,〈prim_rec k h a m, m〉〉]. + +lemma prim_rec_S: ∀k,h,n,m. + prim_rec k h (S n) m = h 〈n,〈prim_rec k h n m, m〉〉. +// qed. + +lemma prim_rec_le: ∀k1,k2,h1,h2. (∀x.k1 x ≤ k2 x) → +(∀x,y.x ≤y → h1 x ≤ h2 y) → + ∀x,m. prim_rec k1 h1 x m ≤ prim_rec k2 h2 x m. +#k1 #k2 #h1 #h2 #lek #leh #x #m elim x // +#n #Hind normalize @leh @le_pair // @le_pair // +qed. + +definition unary_pr ≝ λk,h,x. prim_rec k h (fst x) (snd x). + +lemma prim_rec_unary: ∀k,h,a,b. + prim_rec k h a b = unary_pr k h 〈a,b〉. +#k #h #a #b normalize >fst_pair >snd_pair // +qed. + + +let rec prim_rec_compl (k,h,sk,sh:nat →nat) n m on n ≝ + match n with + [ O ⇒ sk m + | S a ⇒ prim_rec_compl k h sk sh a m + sh (prim_rec k h a m)]. + +axiom CF_prim_rec_gen: ∀k,h,sk,sh,sh1. CF sk k → CF sh h → + O sh1 (λx. fst (snd x) + sh 〈fst x,〈unary_pr k h 〈fst x,snd (snd x)〉,snd (snd x)〉〉) → + CF (unary_pr sk sh1) (unary_pr k h). + +lemma CF_prim_rec: ∀k,h,sk,sh,sf. CF sk k → CF sh h → + O sf (unary_pr sk (λx. fst (snd x) + sh 〈fst x,〈unary_pr k h 〈fst x,snd (snd x)〉,snd (snd x)〉〉)) + → CF sf (unary_pr k h). +#k #h #sk #sh #sf #Hk #Hh #Osf @(O_to_CF … Osf) @(CF_prim_rec_gen … Hk Hh) @O_refl +qed. + +(**************************** primitive operations*****************************) + +definition id ≝ λx:nat.x. + +axiom CF_id: CF MSC id. +axiom CF_const: ∀k.CF MSC (λx.k). +axiom CF_compS: ∀h,f. CF h f → CF h (S ∘ f). +axiom CF_comp_fst: ∀h,f. CF h f → CF h (fst ∘ f). +axiom CF_comp_snd: ∀h,f. CF h f → CF h (snd ∘ f). +axiom CF_comp_pair: ∀h,f,g. CF h f → CF h g → CF h (λx. 〈f x,g x〉). + +lemma CF_fst: CF MSC fst. +@(ext_CF (fst ∘ id)) [#n //] @(CF_comp_fst … CF_id) +qed. + +lemma CF_snd: CF MSC snd. +@(ext_CF (snd ∘ id)) [#n //] @(CF_comp_snd … CF_id) +qed. + +(************************************** eqb ***********************************) + +axiom CF_eqb: ∀h,f,g. + CF h f → CF h g → CF h (λx.eqb (f x) (g x)). + +(*********************************** maximum **********************************) + +alias symbol "pair" (instance 13) = "abstract pair". +alias symbol "pair" (instance 12) = "abstract pair". +alias symbol "and" (instance 11) = "boolean and". +alias symbol "plus" (instance 8) = "natural plus". +alias symbol "pair" (instance 7) = "abstract pair". +alias symbol "plus" (instance 6) = "natural plus". +alias symbol "pair" (instance 5) = "abstract pair". +alias id "max" = "cic:/matita/arithmetics/nat/max#def:2". +alias symbol "minus" (instance 3) = "natural minus". +lemma max_gen: ∀a,b,p,f,x. a ≤b → + max_{i ∈[a,b[ | p 〈i,x〉 }(f 〈i,x〉) = max_{i < b | leb a i ∧ p 〈i,x〉 }(f 〈i,x〉). +#a #b #p #f #x @(bigop_I_gen ????? MaxA) +qed. + +lemma max_prim_rec_base: ∀a,b,p,f,x. a ≤b → + max_{i < b| p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i,x〉 then max (f 〈fst i,snd (snd i)〉) (fst (snd i)) else fst (snd i)) b x. +#a #b #p #f #x #leab >max_gen // elim b + [normalize // + |#i #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma max_prim_rec: ∀a,b,p,f,x. a ≤b → + max_{i ∈[a,b[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if leb a (fst i) ∧ p 〈fst i,x〉 then max (f 〈fst i,snd (snd i)〉) (fst (snd i)) else fst (snd i)) b x. +#a #b #p #f #x #leab >max_gen // elim b + [normalize // + |#i #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >fst_pair + cases (true_or_false (leb a i ∧ p 〈i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma max_prim_rec1: ∀a,b,p,f,x. + max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + then max (f 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈a x ,x〉. +#a #b #p #f #x elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i+a x,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma sum_prim_rec1: ∀a,b,p,f,x. + ∑_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + then plus (f 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈a x ,x〉. +#a #b #p #f #x elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i+a x,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma bigop_prim_rec: ∀a,b,c,p,f,x. + bigop (b x-a x) (λi:ℕ.p 〈i+a x,x〉) ? (c 〈a x,x〉) plus (λi:ℕ.f 〈i+a x,x〉) = + prim_rec c + (λi.if p 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉 + then plus (f 〈fst i +fst (snd (snd i)),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈a x ,x〉. +#a #b #c #p #f #x normalize elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈i+a x,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma bigop_prim_rec_dec: ∀a,b,c,p,f,x. + bigop (b x-a x) (λi:ℕ.p 〈b x -i,x〉) ? (c 〈b x,x〉) plus (λi:ℕ.f 〈b x-i,x〉) = + prim_rec c + (λi.if p 〈fst (snd (snd i)) - fst i,snd (snd (snd i))〉 + then plus (f 〈fst (snd (snd i)) - fst i,snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (b x-a x) 〈b x ,x〉. +#a #b #c #p #f #x normalize elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈b x - i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +lemma bigop_prim_rec_dec1: ∀a,b,c,p,f,x. + bigop (S(b x)-a x) (λi:ℕ.p 〈b x - i,x〉) ? (c 〈b x,x〉) plus (λi:ℕ.f 〈b x- i,x〉) = + prim_rec c + (λi.if p 〈fst (snd (snd i)) - (fst i),snd (snd (snd i))〉 + then plus (f 〈fst (snd (snd i)) - (fst i),snd (snd (snd i))〉) (fst (snd i)) + else fst (snd i)) (S(b x)-a x) 〈b x,x〉. +#a #b #c #p #f #x elim (S(b x)-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + cases (true_or_false (p 〈b x - i,x〉)) #Hcase >Hcase + [bigop_Strue // |bigop_Sfalse // ] + ] +qed. + +(* +lemma bigop_aux_1: ∀k,c,f. + bigop (S k) (λi:ℕ.true) ? c plus (λi:ℕ.f i) = + f 0 + bigop k (λi:ℕ.true) ? c plus (λi:ℕ.f (S i)). +#k #c #f elim k [normalize //] #i #Hind >bigop_Strue // + +lemma bigop_prim_rec_dec: ∀a,b,c,f,x. + bigop (b x-a x) (λi:ℕ.true) ? (c 〈b x,x〉) plus (λi:ℕ.f 〈i+a x,x〉) = + prim_rec c + (λi. plus (f 〈fst (snd (snd i)) - fst i,snd (snd (snd i))〉) (fst (snd i))) + (b x-a x) 〈b x ,x〉. +#a #b #c #f #x normalize elim (b x-a x) + [normalize // + |#i #Hind >prim_rec_S + >fst_pair >snd_pair >snd_pair >fst_pair >snd_pair >fst_pair + bigop_Strue // |bigop_Sfalse // ] + ] +qed. *) + +lemma bigop_plus_c: ∀k,p,f,c. + c k + bigop k (λi.p i) ? 0 plus (λi.f i) = + bigop k (λi.p i) ? (c k) plus (λi.f i). +#k #p #f elim k [normalize //] +#i #Hind #c cases (true_or_false (p i)) #Hcase +[>bigop_Strue // >bigop_Strue // (commutative_plus ? (f i)) + >associative_plus @eq_f @Hind +|>bigop_Sfalse // >bigop_Sfalse // +] +qed. + +(* the argument is 〈b-a,〈a,x〉〉 *) + + +definition max_unary_pr ≝ λp,f.unary_pr (λx.0) + (λi. + let k ≝ fst i in + let r ≝ fst (snd i) in + let a ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + if p 〈k + a,x〉 then max (f 〈k+a,x〉) r else r). + +lemma max_unary_pr1: ∀a,b,p,f,x. + max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉) = + ((max_unary_pr p f) ∘ (λx.〈b x - a x,〈a x,x〉〉)) x. +#a #b #p #f #x normalize >fst_pair >snd_pair @max_prim_rec1 +qed. + +(* +lemma max_unary_pr: ∀a,b,p,f,x. + max_{i ∈[a,b[ | p 〈i,x〉 }(f 〈i,x〉) = + prim_rec (λi.0) + (λi.if p 〈fst i +a,x〉 then max (f 〈fst i +a ,snd (snd i)〉) (fst (snd i)) else fst (snd i)) (b-a) x. +*) + +(* +definition unary_compl ≝ λp,f,hf. + unary_pr MSC + (λx:ℕ + .fst (snd x) + +hf + 〈fst x, + 〈unary_pr (λx0:ℕ.O) + (λi:ℕ + .(let (k:ℕ) ≝fst i in  + let (r:ℕ) ≝fst (snd i) in  + let (a:ℕ) ≝fst (snd (snd i)) in  + let (x:ℕ) ≝snd (snd (snd i)) in  + if p 〈k+a,x〉 then max (f 〈k+a,x〉) r else r )) 〈fst x,snd (snd x)〉, + snd (snd x)〉〉). *) + +definition aux_compl ≝ λhp,hf.λi. + let k ≝ fst i in  + let r ≝ fst (snd i) in  + let a ≝ fst (snd (snd i)) in  + let x ≝ snd (snd (snd i)) in  + hp 〈k+a,x〉 + hf 〈k+a,x〉 + (* was MSC r*) MSC i . + +definition aux_compl1 ≝ λhp,hf.λi. + let k ≝ fst i in  + let r ≝ fst (snd i) in  + let a ≝ fst (snd (snd i)) in  + let x ≝ snd (snd (snd i)) in  + hp 〈k+a,x〉 + hf 〈k+a,x〉 + MSC r. + +lemma aux_compl1_def: ∀k,r,m,hp,hf. + aux_compl1 hp hf 〈k,〈r,m〉〉 = + let a ≝ fst m in  + let x ≝ snd m in  + hp 〈k+a,x〉 + hf 〈k+a,x〉 + MSC r. +#k #r #m #hp #hf normalize >fst_pair >snd_pair >snd_pair >fst_pair // +qed. + +lemma aux_compl1_def1: ∀k,r,a,x,hp,hf. + aux_compl1 hp hf 〈k,〈r,〈a,x〉〉〉 = hp 〈k+a,x〉 + hf 〈k+a,x〉 + MSC r. +#k #r #a #x #hp #hf normalize >fst_pair >snd_pair >snd_pair >fst_pair +>fst_pair >snd_pair // +qed. + + +axiom Oaux_compl: ∀hp,hf. O (aux_compl1 hp hf) (aux_compl hp hf). + +(* +definition IF ≝ λb,f,g:nat →option nat. λx. + match b x with + [None ⇒ None ? + |Some n ⇒ if (eqb n 0) then f x else g x]. +*) + +axiom CF_if: ∀b:nat → bool. ∀f,g,s. CF s b → CF s f → CF s g → + CF s (λx. if b x then f x else g x). + +(* +lemma IF_CF: ∀b,f,g,sb,sf,sg. CF sb b → CF sf f → CF sg g → + CF (λn. sb n + sf n + sg n) (IF b f g). +#b #f #g #sb #sf #sg #Hb #Hf #Hg @IF_CF_new + [@(monotonic_CF … Hb) @O_plus_l @O_plus_l // + |@(monotonic_CF … Hf) @O_plus_l @O_plus_r // + |@(monotonic_CF … Hg) @O_plus_r // + ] +qed. +*) + +axiom CF_le: ∀h,f,g. CF h f → CF h g → CF h (λx. leb (f x) (g x)). +axiom CF_max1: ∀h,f,g. CF h f → CF h g → CF h (λx. max (f x) (g x)). +axiom CF_plus: ∀h,f,g. CF h f → CF h g → CF h (λx. f x + g x). +axiom CF_minus: ∀h,f,g. CF h f → CF h g → CF h (λx. f x - g x). + +axiom MSC_prop: ∀f,h. CF h f → ∀x. MSC (f x) ≤ h x. + +lemma MSC_max: ∀f,h,x. CF h f → MSC (max_{i < x}(f i)) ≤ max_{i < x}(h i). +#f #h #x #hf elim x // #i #Hind >bigop_Strue [|//] >bigop_Strue [|//] +whd in match (max ??); +cases (true_or_false (leb (f i) (bigop i (λi0:ℕ.true) ? 0 max(λi0:ℕ.f i0)))) +#Hcase >Hcase + [@(transitive_le … Hind) @le_maxr // + |@(transitive_le … (MSC_prop … hf i)) @le_maxl // + ] +qed. + +lemma CF_max: ∀a,b.∀p:nat →bool.∀f,ha,hb,hp,hf,s. + CF ha a → CF hb b → CF hp p → CF hf f → + O s (λx.ha x + hb x + + (∑_{i ∈[a x ,b x[ } + (hp 〈i,x〉 + hf 〈i,x〉 + max_{i ∈ [a x, b x [ }(hf 〈i,x〉)))) → + CF s (λx.max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉)). +#a #b #p #f #ha #hb #hp #hf #s #CFa #CFb #CFp #CFf #HO +@ext_CF1 [|#x @max_unary_pr1] +@(CF_comp ??? (λx.ha x + hb x)) + [|@CF_comp_pair + [@CF_minus [@(O_to_CF … CFb) @O_plus_r // |@(O_to_CF … CFa) @O_plus_l //] + |@CF_comp_pair + [@(O_to_CF … CFa) @O_plus_l // + | @(O_to_CF … CF_id) @O_plus_r @(proj1 … CFb) + ] + ] + |@(CF_prim_rec … MSC … (aux_compl1 hp hf)) + [@CF_const + |@(O_to_CF … (Oaux_compl … )) + @CF_if + [@(CF_comp p … MSC … CFp) + [@CF_comp_pair + [@CF_plus [@CF_fst| @CF_comp_fst @CF_comp_snd @CF_snd] + |@CF_comp_snd @CF_comp_snd @CF_snd] + |@le_to_O #x normalize >commutative_plus >associative_plus @le_plus // + ] + |@CF_max1 + [@(CF_comp f … MSC … CFf) + [@CF_comp_pair + [@CF_plus [@CF_fst| @CF_comp_fst @CF_comp_snd @CF_snd] + |@CF_comp_snd @CF_comp_snd @CF_snd] + |@le_to_O #x normalize >commutative_plus // + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@O_refl + ] + |@(O_trans … HO) -HO + @(O_trans ? (λx:ℕ + .ha x+hb x + +bigop (b x-a x) (λi:ℕ.true) ? (MSC 〈a x,x〉) plus + (λi:ℕ + .(λi0:ℕ + .hp 〈i0,x〉+hf 〈i0,x〉 + +bigop (b x-a x) (λi1:ℕ.true) ? 0 max + (λi1:ℕ.(λi2:ℕ.hf 〈i2,x〉) (i1+a x))) (i+a x)))) + [ + @le_to_O #n @le_plus // whd in match (unary_pr ???); + >fst_pair >snd_pair >bigop_prim_rec elim (b n - a n) + [normalize // + |#x #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >aux_compl1_def1 + >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >fst_pair + >snd_pair normalize in ⊢ (??%); >commutative_plus @le_plus + [-Hind @le_plus // normalize >fst_pair >snd_pair + @(transitive_le ? (bigop x (λi1:ℕ.true) ? 0 (λn0:ℕ.λm:ℕ.if leb n0 m then m else n0 ) + (λi1:ℕ.hf 〈i1+a n,n〉))) + [elim x [normalize @MSC_le] + #x0 #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >snd_pair + >fst_pair >fst_pair cases (p 〈x0+a n,n〉) normalize + [cases (true_or_false (leb (f 〈x0+a n,n〉) + (prim_rec (λx00:ℕ.O) + (λi:ℕ + .if p 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉  + then if leb (f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉) + (fst (snd i))  + then fst (snd i)  + else f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉   + else fst (snd i) ) x0 〈a n,n〉))) #Hcase >Hcase normalize + [@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + |@(transitive_le … (MSC_prop … CFf …)) @(le_maxl … (le_n …)) + ] + |@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + ] + |@(le_maxr … (le_n …)) + ] + |@(transitive_le … Hind) -Hind + generalize in match (bigop x (λi:ℕ.true) ? 0 max + (λi1:ℕ.(λi2:ℕ.hf 〈i2,n〉) (i1+a n))); #c + generalize in match (hf 〈x+a n,n〉); #c1 + elim x [//] #x0 #Hind + >prim_rec_S >prim_rec_S normalize >fst_pair >fst_pair >snd_pair + >snd_pair >snd_pair >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair + >fst_pair @le_plus + [@le_plus // cases (true_or_false (leb c1 c)) #Hcase + >Hcase normalize // @lt_to_le @not_le_to_lt @(leb_false_to_not_le ?? Hcase) + |@Hind + ] + ] + ] + |@O_plus [@O_plus_l //] @le_to_O #x + Hind +cases (true_or_false (eqb a (a+i))) #Hcase >Hcase normalize // +<(eqb_true_to_eq … Hcase) >H // +qed. + +lemma my_minim_nfa : ∀a,f,x,k. f〈a,x〉 = false → +my_minim a f x (S k) = my_minim (S a) f x k. +#a #f #x #k #H elim k + [normalize H >eq_to_eqb_true // + |#i #Hind >my_minim_S >Hind >my_minim_S Hcase + [>(my_minim_fa … Hcase) // | >Hind @sym_eq @(my_minim_nfa … Hcase) ] +qed. + +(* cambiare qui: togliere S *) + + +definition minim_unary_pr ≝ λf.unary_pr (λx.S(fst x)) + (λi. + let k ≝ fst i in + let r ≝ fst (snd i) in + let b ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + if f 〈b-k,x〉 then b-k else r). + +definition compl_minim_unary ≝ λhf:nat → nat.λi. + let k ≝ fst i in + let b ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + hf 〈b-k,x〉 + MSC 〈k,〈S b,x〉〉. + +definition compl_minim_unary_aux ≝ λhf,i. + let k ≝ fst i in + let r ≝ fst (snd i) in + let b ≝ fst (snd (snd i)) in + let x ≝ snd (snd (snd i)) in + hf 〈b-k,x〉 + MSC i. + +lemma compl_minim_unary_aux_def : ∀hf,k,r,b,x. + compl_minim_unary_aux hf 〈k,〈r,〈b,x〉〉〉 = hf 〈b-k,x〉 + MSC 〈k,〈r,〈b,x〉〉〉. +#hf #k #r #b #x normalize >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair // +qed. + +lemma compl_minim_unary_def : ∀hf,k,r,b,x. + compl_minim_unary hf 〈k,〈r,〈b,x〉〉〉 = hf 〈b-k,x〉 + MSC 〈k,〈S b,x〉〉. +#hf #k #r #b #x normalize >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair // +qed. + +lemma compl_minim_unary_aux_def2 : ∀hf,k,r,x. + compl_minim_unary_aux hf 〈k,〈r,x〉〉 = hf 〈fst x-k,snd x〉 + MSC 〈k,〈r,x〉〉. +#hf #k #r #x normalize >snd_pair >snd_pair >fst_pair // +qed. + +lemma compl_minim_unary_def2 : ∀hf,k,r,x. + compl_minim_unary hf 〈k,〈r,x〉〉 = hf 〈fst x-k,snd x〉 + MSC 〈k,〈S(fst x),snd x〉〉. +#hf #k #r #x normalize >snd_pair >snd_pair >fst_pair // +qed. + +lemma min_aux: ∀a,f,x,k. min (S k) (a x) (λi:ℕ.f 〈i,x〉) = + ((minim_unary_pr f) ∘ (λx.〈S k,〈a x + k,x〉〉)) x. +#a #f #x #k whd in ⊢ (???%); >fst_pair >snd_pair +lapply a -a (* @max_prim_rec1 *) +elim k + [normalize #a >fst_pair >snd_pair >fst_pair >snd_pair >snd_pair >fst_pair + fst_pair // + |#i #Hind #a normalize in ⊢ (??%?); >prim_rec_S >fst_pair >snd_pair + >fst_pair >snd_pair >snd_pair >fst_pair minus_S_S <(minus_plus_m_m (a x) i) // +qed. + +lemma minim_unary_pr1: ∀a,b,f,x. + μ_{i ∈[a x,b x]}(f 〈i,x〉) = + if leb (a x) (b x) then ((minim_unary_pr f) ∘ (λx.〈S (b x) - a x,〈b x,x〉〉)) x + else (a x). +#a #b #f #x cases (true_or_false (leb (a x) (b x))) #Hcase >Hcase + [cut (b x = a x + (b x - a x)) + [>commutative_plus minus_Sn_m [|@leb_true_to_le //] + >min_aux whd in ⊢ (??%?); eq_minus_O // @not_le_to_lt @leb_false_to_not_le // + ] +qed. + +axiom sum_inv: ∀a,b,f.∑_{i ∈ [a,S b[ }(f i) = ∑_{i ∈ [a,S b[ }(f (a + b - i)). + +(* +#a #b #f @(bigop_iso … plusAC) whd %{(λi.b - a - i)} %{(λi.b - a -i)} % + [%[#i #lti #_ normalize @eq_f >commutative_plus commutative_plus // + ] + |@(O_to_CF … MSC) + [@le_to_O #x normalize // + |@CF_minus + [@CF_comp_fst @CF_comp_snd @CF_snd |@CF_fst] + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@O_plus + [@O_plus_l @O_refl + |@O_plus_r @O_ext2 [||#x >compl_minim_unary_aux_def2 @refl] + @O_trans [||@le_to_O #x >compl_minim_unary_def2 @le_n] + @O_plus [@O_plus_l //] + @O_plus_r + @O_trans [|@le_to_O #x @MSC_pair] @O_plus + [@le_to_O #x @monotonic_MSC @(transitive_le ???? (le_fst …)) + >fst_pair @le_n] + @O_trans [|@le_to_O #x @MSC_pair] @O_plus + [@le_to_O #x @monotonic_MSC @(transitive_le ???? (le_snd …)) + >snd_pair @(transitive_le ???? (le_fst …)) >fst_pair + normalize >snd_pair >fst_pair lapply (surj_pair x) + * #x1 * #x2 #Hx >Hx >fst_pair >snd_pair elim x1 // + #i #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >fst_pair + cases (f ?) [@le_S // | //]] + @le_to_O #x @monotonic_MSC @(transitive_le ???? (le_snd …)) >snd_pair + >(expand_pair (snd (snd x))) in ⊢ (?%?); @le_pair // + ] + ] + |cut (O s (λx.ha x + hb x + + ∑_{i ∈[a x ,S(b x)[ }(hf 〈a x+b x-i,x〉 + MSC 〈b x -(a x+b x-i),〈S(b x),x〉〉))) + [@(O_ext2 … HO) #x @eq_f @sum_inv] -HO #HO + @(O_trans … HO) -HO + @(O_trans ? (λx:ℕ.ha x+hb x + +bigop (S(b x)-a x) (λi:ℕ.true) ? + (MSC 〈b x,x〉) plus (λi:ℕ.(λj.hf j + MSC 〈b x - fst j,〈S(b (snd j)),snd j〉〉) 〈b x- i,x〉))) + [@le_to_O #n @le_plus // whd in match (unary_pr ???); + >fst_pair >snd_pair >(bigop_prim_rec_dec1 a b ? (λi.true)) + (* it is crucial to recall that the index is bound by S(b x) *) + cut (S (b n) - a n ≤ S (b n)) [//] + elim (S(b n) - a n) + [normalize // + |#x #Hind #lex >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair + >compl_minim_unary_def >prim_rec_S >fst_pair >snd_pair >fst_pair + >snd_pair >fst_pair >snd_pair >fst_pair whd in ⊢ (??%); >commutative_plus + @le_plus [2:@Hind @le_S @le_S_S_to_le @lex] -Hind >snd_pair + >minus_minus_associative // @le_S_S_to_le // + ] + |@O_plus [@O_plus_l //] @O_ext2 [||#x @bigop_plus_c] + @O_plus + [@O_plus_l @O_trans [|@le_to_O #x @MSC_pair] + @O_plus [@O_plus_r @le_to_O @(MSC_prop … CFb)|@O_plus_r @(proj1 … CFb)] + |@O_plus_r @(O_ext2 … (O_refl …)) #x @same_bigop + [//|#i #H #_ @eq_f2 [@eq_f @eq_f2 //|>fst_pair @eq_f @eq_f2 //] + ] + ] + ] + ] + |@(O_to_CF … CFa) @(O_trans … HO) @O_plus_l @O_plus_l @O_refl + ] +qed. + +(* +lemma CF_mu: ∀a,b.∀f:nat →bool.∀sa,sb,sf,s. + CF sa a → CF sb b → CF sf f → + O s (λx.sa x + sb x + ∑_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉)) → + CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). +#a #b #f #ha #hb #hf #s #CFa #CFb #CFf #HO +@ext_CF1 [|#x @minim_unary_pr1] +@(CF_comp ??? (λx.ha x + hb x)) + [|@CF_comp_pair + [@CF_minus [@CF_compS @(O_to_CF … CFb) @O_plus_r // |@(O_to_CF … CFa) @O_plus_l //] + |@CF_comp_pair + [@CF_max1 [@(O_to_CF … CFa) @O_plus_l // | @CF_compS @(O_to_CF … CFb) @O_plus_r //] + | @(O_to_CF … CF_id) @O_plus_r @(proj1 … CFb) + ] + ] + |@(CF_prim_rec … MSC … (compl_minim_unary_aux hf)) + [@CF_fst + |@CF_if + [@(CF_comp f … MSC … CFf) + [@CF_comp_pair + [@CF_minus [@CF_comp_fst @CF_comp_snd @CF_snd|@CF_compS @CF_fst] + |@CF_comp_snd @CF_comp_snd @CF_snd] + |@le_to_O #x normalize >commutative_plus // + ] + |@(O_to_CF … MSC) + [@le_to_O #x normalize // + |@CF_minus + [@CF_comp_fst @CF_comp_snd @CF_snd |@CF_compS @CF_fst] + ] + |@CF_comp_fst @(monotonic_CF … CF_snd) normalize // + ] + |@O_refl + ] + |@(O_trans … HO) -HO + @(O_trans ? (λx:ℕ + .ha x+hb x + +bigop (S(b x)-a x) (λi:ℕ.true) ? (MSC 〈a x,x〉) plus (λi:ℕ.hf 〈i+a x,x〉))) + [@le_to_O #n @le_plus // whd in match (unary_pr ???); + >fst_pair >snd_pair >(bigop_prim_rec ? (λn.S(b n)) ? (λi.true)) elim (S(b n) - a n) + [normalize @monotonic_MSC @le_pair + |#x #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >compl_minim_unary_def + >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >fst_pair + >snd_pair normalize in ⊢ (??%); >commutative_plus @le_plus + [-Hind @le_plus // normalize >fst_pair >snd_pair + @(transitive_le ? (bigop x (λi1:ℕ.true) ? 0 (λn0:ℕ.λm:ℕ.if leb n0 m then m else n0 ) + (λi1:ℕ.hf 〈i1+a n,n〉))) + [elim x [normalize @MSC_le] + #x0 #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >snd_pair + >fst_pair >fst_pair cases (p 〈x0+a n,n〉) normalize + [cases (true_or_false (leb (f 〈x0+a n,n〉) + (prim_rec (λx00:ℕ.O) + (λi:ℕ + .if p 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉  + then if leb (f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉) + (fst (snd i))  + then fst (snd i)  + else f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉   + else fst (snd i) ) x0 〈a n,n〉))) #Hcase >Hcase normalize + [@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + |@(transitive_le … (MSC_prop … CFf …)) @(le_maxl … (le_n …)) + ] + |@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + ] + |@(le_maxr … (le_n …)) + ] + + + @(O_trans ? (λx:ℕ + .ha x+hb x + +bigop (b x-a x) (λi:ℕ.true) ? (MSC 〈a x,x〉) plus + (λi:ℕ + .(λi0:ℕ + .hp 〈i0,x〉+hf 〈i0,x〉 + +bigop (b x-a x) (λi1:ℕ.true) ? 0 max + (λi1:ℕ.(λi2:ℕ.hf 〈i2,x〉) (i1+a x))) (i+a x)))) + [ + @le_to_O #n @le_plus // whd in match (unary_pr ???); + >fst_pair >snd_pair >bigop_prim_rec elim (b n - a n) + [normalize // + |#x #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >aux_compl1_def1 + >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair >fst_pair + >snd_pair normalize in ⊢ (??%); >commutative_plus @le_plus + [-Hind @le_plus // normalize >fst_pair >snd_pair + @(transitive_le ? (bigop x (λi1:ℕ.true) ? 0 (λn0:ℕ.λm:ℕ.if leb n0 m then m else n0 ) + (λi1:ℕ.hf 〈i1+a n,n〉))) + [elim x [normalize @MSC_le] + #x0 #Hind >prim_rec_S >fst_pair >snd_pair >snd_pair >snd_pair + >fst_pair >fst_pair cases (p 〈x0+a n,n〉) normalize + [cases (true_or_false (leb (f 〈x0+a n,n〉) + (prim_rec (λx00:ℕ.O) + (λi:ℕ + .if p 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉  + then if leb (f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉) + (fst (snd i))  + then fst (snd i)  + else f 〈fst i+fst (snd (snd i)),snd (snd (snd i))〉   + else fst (snd i) ) x0 〈a n,n〉))) #Hcase >Hcase normalize + [@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + |@(transitive_le … (MSC_prop … CFf …)) @(le_maxl … (le_n …)) + ] + |@(transitive_le … Hind) -Hind @(le_maxr … (le_n …)) + ] + |@(le_maxr … (le_n …)) + ] + |@(transitive_le … Hind) -Hind + generalize in match (bigop x (λi:ℕ.true) ? 0 max + (λi1:ℕ.(λi2:ℕ.hf 〈i2,n〉) (i1+a n))); #c + generalize in match (hf 〈x+a n,n〉); #c1 + elim x [//] #x0 #Hind + >prim_rec_S >prim_rec_S normalize >fst_pair >fst_pair >snd_pair + >snd_pair >snd_pair >snd_pair >snd_pair >snd_pair >fst_pair >fst_pair + >fst_pair @le_plus + [@le_plus // cases (true_or_false (leb c1 c)) #Hcase + >Hcase normalize // @lt_to_le @not_le_to_lt @(leb_false_to_not_le ?? Hcase) + |@Hind + ] + ] + ] + |@O_plus [@O_plus_l //] @le_to_O #x + Hext // +qed. + +lemma constr_prim_rec: ∀s1,s2. constructible s1 → constructible s2 → + (∀n,r,m. 2 * r ≤ s2 〈n,〈r,m〉〉) → constructible (unary_pr s1 s2). +#s1 #s2 #Hs1 #Hs2 #Hincr @(CF_prim_rec … Hs1 Hs2) whd %{2} %{0} +#x #_ lapply (surj_pair x) * #a * #b #eqx >eqx whd in match (unary_pr ???); +>fst_pair >snd_pair +whd in match (unary_pr ???); >fst_pair >snd_pair elim a + [normalize // + |#n #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair + >prim_rec_S @transitive_le [| @(monotonic_le_plus_l … Hind)] + @transitive_le [| @(monotonic_le_plus_l … (Hincr n ? b))] + whd in match (unary_pr ???); >fst_pair >snd_pair // + ] +qed. + +(********************************* simulation *********************************) + +axiom sU : nat → nat. + +axiom monotonic_sU: ∀i1,i2,x1,x2,s1,s2. i1 ≤ i2 → x1 ≤ x2 → s1 ≤ s2 → + sU 〈i1,〈x1,s1〉〉 ≤ sU 〈i2,〈x2,s2〉〉. + +lemma monotonic_sU_aux : ∀x1,x2. fst x1 ≤ fst x2 → fst (snd x1) ≤ fst (snd x2) → +snd (snd x1) ≤ snd (snd x2) → sU x1 ≤ sU x2. +#x1 #x2 cases (surj_pair x1) #a1 * #y #eqx1 >eqx1 -eqx1 cases (surj_pair y) +#b1 * #c1 #eqy >eqy -eqy +cases (surj_pair x2) #a2 * #y2 #eqx2 >eqx2 -eqx2 cases (surj_pair y2) +#b2 * #c2 #eqy2 >eqy2 -eqy2 >fst_pair >snd_pair >fst_pair >snd_pair +>fst_pair >snd_pair >fst_pair >snd_pair @monotonic_sU +qed. + +axiom sU_le: ∀i,x,s. s ≤ sU 〈i,〈x,s〉〉. +axiom sU_le_i: ∀i,x,s. MSC i ≤ sU 〈i,〈x,s〉〉. +axiom sU_le_x: ∀i,x,s. MSC x ≤ sU 〈i,〈x,s〉〉. + +definition pU_unary ≝ λp. pU (fst p) (fst (snd p)) (snd (snd p)). + +axiom CF_U : CF sU pU_unary. + +definition termb_unary ≝ λx:ℕ.termb (fst x) (fst (snd x)) (snd (snd x)). +definition out_unary ≝ λx:ℕ.out (fst x) (fst (snd x)) (snd (snd x)). + +lemma CF_termb: CF sU termb_unary. +@(ext_CF (fst ∘ pU_unary)) [2: @CF_comp_fst @CF_U] +#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >fst_pair % +qed. + +lemma CF_out: CF sU out_unary. +@(ext_CF (snd ∘ pU_unary)) [2: @CF_comp_snd @CF_U] +#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >snd_pair % +qed. + + +(******************** complexity of g ********************) + +(*definition unary_g ≝ λh.λux. g h (fst ux) (snd ux). +definition auxg ≝ + λh,ux. max_{i ∈[fst ux,snd ux[ | eqb (min_input h i (snd ux)) (snd ux)} + (out i (snd ux) (h (S i) (snd ux))). + +lemma compl_g1 : ∀h,s. CF s (auxg h) → CF s (unary_g h). +#h #s #H1 @(CF_compS ? (auxg h) H1) +qed. + +definition aux1g ≝ + λh,ux. max_{i ∈[fst ux,snd ux[ | (λp. eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))) 〈i,ux〉} + ((λp.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p)))) 〈i,ux〉). + +lemma eq_aux : ∀h,x.aux1g h x = auxg h x. +#h #x @same_bigop + [#n #_ >fst_pair >snd_pair // |#n #_ #_ >fst_pair >snd_pair //] +qed. + +lemma compl_g2 : ∀h,s1,s2,s. + CF s1 + (λp:ℕ.eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))) → + CF s2 + (λp:ℕ.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p)))) → + O s (λx.MSC x + ∑_{i ∈[fst x ,snd x[ }(s1 〈i,x〉+s2 〈i,x〉)) → + CF s (auxg h). +#h #s1 #s2 #s #Hs1 #Hs2 #HO @(ext_CF (aux1g h)) + [#n whd in ⊢ (??%%); @eq_aux] +@(CF_max … CF_fst CF_snd Hs1 Hs2 …) @(O_trans … HO) +@O_plus [@O_plus @O_plus_l // | @O_plus_r //] +qed. + +lemma compl_g3 : ∀h,s. + CF s (λp:ℕ.min_input h (fst p) (snd (snd p))) → + CF s (λp:ℕ.eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))). +#h #s #H @(CF_eqb … H) @(CF_comp … CF_snd CF_snd) @(O_trans … (proj1 … H)) +@O_plus // %{1} %{0} #n #_ >commutative_times min_input_def whd in ⊢ (??%?); >minus_S_S @min_f_g #i #_ #_ +whd in ⊢ (??%%); >fst_pair >snd_pair // +qed. + +definition termb_aux ≝ λh. + termb_unary ∘ λp.〈fst (snd p),〈fst p,h (S (fst (snd p))) (fst p)〉〉. + +lemma compl_g4 : ∀h,s1,s. + (CF s1 + (λp.termb (fst (snd p)) (fst p) (h (S (fst (snd p))) (fst p)))) → + (O s (λx.MSC x + ∑_{i ∈[S(fst x) ,S(snd (snd x))[ }(s1 〈i,x〉))) → + CF s (λp:ℕ.min_input h (fst p) (snd (snd p))). +#h #s1 #s #Hs1 #HO @(ext_CF (min_input_aux h)) + [#n whd in ⊢ (??%%); @min_input_eq] +@(CF_mu … MSC MSC … Hs1) + [@CF_compS @CF_fst + |@CF_comp_snd @CF_snd + |@(O_trans … HO) @O_plus [@O_plus @O_plus_l // | @O_plus_r //] +qed.*) + +(************************* a couple of technical lemmas ***********************) +lemma minus_to_0: ∀a,b. a ≤ b → minus a b = 0. +#a elim a // #n #Hind * + [#H @False_ind /2 by absurd/ | #b normalize #H @Hind @le_S_S_to_le /2/] +qed. + +lemma sigma_bound: ∀h,a,b. monotonic nat le h → + ∑_{i ∈ [a,S b[ }(h i) ≤ (S b-a)*h b. +#h #a #b #H cases (decidable_le a b) + [#leab cut (b = pred (S b - a + a)) + [Hb in match (h b); + generalize in match (S b -a); + #n elim n + [// + |#m #Hind >bigop_Strue [2://] @le_plus + [@H @le_n |@(transitive_le … Hind) @le_times [//] @H //] + ] + |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba + cut (S b -a = 0) [@minus_to_0 //] #Hcut >Hcut // + ] +qed. + +lemma sigma_bound_decr: ∀h,a,b. (∀a1,a2. a1 ≤ a2 → a2 < b → h a2 ≤ h a1) → + ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*h a. +#h #a #b #H cases (decidable_le a b) + [#leab cut ((b -a) +a ≤ b) [/2 by le_minus_to_plus_r/] generalize in match (b -a); + #n elim n + [// + |#m #Hind >bigop_Strue [2://] #Hm + cut (m+a ≤ b) [@(transitive_le … Hm) //] #Hm1 + @le_plus [@H // |@(transitive_le … (Hind Hm1)) //] + ] + |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba + cut (b -a = 0) [@minus_to_0 @lt_to_le @ltba] #Hcut >Hcut // + ] +qed. + +lemma coroll: ∀s1:nat→nat. (∀n. monotonic ℕ le (λa:ℕ.s1 〈a,n〉)) → +O (λx.(snd (snd x)-fst x)*(s1 〈snd (snd x),x〉)) + (λx.∑_{i ∈[S(fst x) ,S(snd (snd x))[ }(s1 〈i,x〉)). +#s1 #Hs1 %{1} %{0} #n #_ >commutative_times minus_S_S //] +qed. + +lemma coroll2: ∀s1:nat→nat. (∀n,a,b. a ≤ b → b < snd n → s1 〈b,n〉 ≤ s1 〈a,n〉) → +O (λx.(snd x - fst x)*s1 〈fst x,x〉) (λx.∑_{i ∈[fst x,snd x[ }(s1 〈i,x〉)). +#s1 #Hs1 %{1} %{0} #n #_ >commutative_times fst_pair >snd_pair >fst_pair >snd_pair // ] +@(CF_comp … (λx.MSC x + h (S (fst (snd x))) (fst x)) … CF_termb) + [@CF_comp_pair + [@CF_comp_fst @(monotonic_CF … CF_snd) #x // + |@CF_comp_pair + [@(monotonic_CF … CF_fst) #x // + |@(ext_CF ((λx.h (fst x) (snd x))∘(λx.〈S (fst (snd x)),fst x〉))) + [#n normalize >fst_pair >snd_pair %] + @(CF_comp … MSC …hconstr) + [@CF_comp_pair [@CF_compS @CF_comp_fst // |//] + |@O_plus @le_to_O [//|#n >fst_pair >snd_pair //] + ] + ] + ] + |@O_plus + [@O_plus + [@(O_trans … (λx.MSC (fst x) + MSC (max (fst (snd x)) (snd (snd x))))) + [%{2} %{0} #x #_ cases (surj_pair x) #a * #b #eqx >eqx + >fst_pair >snd_pair @(transitive_le … (MSC_pair …)) + >distributive_times_plus @le_plus [//] + cases (surj_pair b) #c * #d #eqb >eqb + >fst_pair >snd_pair @(transitive_le … (MSC_pair …)) + whd in ⊢ (??%); @le_plus + [@monotonic_MSC @(le_maxl … (le_n …)) + |>commutative_times fst_pair >snd_pair // qed. + +lemma le_big : ∀x. x ≤ big x. +#x cases (surj_pair x) #a * #b #eqx >eqx @le_pair >fst_pair >snd_pair +[@(le_maxl … (le_n …)) | @(le_maxr … (le_n …))] +qed. + +definition faux2 ≝ λh. + (λx.MSC x + (snd (snd x)-fst x)* + (λx.sU 〈max (fst(snd x)) (snd(snd x)),〈fst x,h (S (fst (snd x))) (fst x)〉〉) 〈snd (snd x),x〉). + +(*lemma compl_g7: ∀h. + constructible (λx. h (fst x) (snd x)) → + (∀n. monotonic ? le (h n)) → + CF (λx.MSC x + (snd (snd x)-fst x)*sU 〈max (fst x) (snd x),〈snd (snd x),h (S (fst x)) (snd (snd x))〉〉) + (λp:ℕ.min_input h (fst p) (snd (snd p))). +#h #hcostr #hmono @(monotonic_CF … (faux2 h)) + [#n normalize >fst_pair >snd_pair //] +@compl_g5 [2:@(compl_g6 h hcostr)] #n #x #y #lexy >fst_pair >snd_pair +>fst_pair >snd_pair @monotonic_sU // @hmono @lexy +qed. + +lemma compl_g71: ∀h. + constructible (λx. h (fst x) (snd x)) → + (∀n. monotonic ? le (h n)) → + CF (λx.MSC (big x) + (snd (snd x)-fst x)*sU 〈max (fst x) (snd x),〈snd (snd x),h (S (fst x)) (snd (snd x))〉〉) + (λp:ℕ.min_input h (fst p) (snd (snd p))). +#h #hcostr #hmono @(monotonic_CF … (compl_g7 h hcostr hmono)) #x +@le_plus [@monotonic_MSC //] +cases (decidable_le (fst x) (snd(snd x))) + [#Hle @le_times // @monotonic_sU + |#Hlt >(minus_to_0 … (lt_to_le … )) [// | @not_le_to_lt @Hlt] + ] +qed.*) + +definition out_aux ≝ λh. + out_unary ∘ λp.〈fst p,〈snd(snd p),h (S (fst p)) (snd (snd p))〉〉. + +lemma compl_g8: ∀h. + constructible (λx. h (fst x) (snd x)) → + (CF (λx. sU 〈max (fst x) (snd x),〈snd(snd x),h (S (fst x)) (snd(snd x))〉〉) + (λp.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p))))). +#h #hconstr @(ext_CF (out_aux h)) + [#n normalize >fst_pair >snd_pair >fst_pair >snd_pair // ] +@(CF_comp … (λx.h (S (fst x)) (snd(snd x)) + MSC x) … CF_out) + [@CF_comp_pair + [@(monotonic_CF … CF_fst) #x // + |@CF_comp_pair + [@CF_comp_snd @(monotonic_CF … CF_snd) #x // + |@(ext_CF ((λx.h (fst x) (snd x))∘(λx.〈S (fst x),snd(snd x)〉))) + [#n normalize >fst_pair >snd_pair %] + @(CF_comp … MSC …hconstr) + [@CF_comp_pair [@CF_compS // | @CF_comp_snd // ] + |@O_plus @le_to_O [//|#n >fst_pair >snd_pair //] + ] + ] + ] + |@O_plus + [@O_plus + [@le_to_O #n @sU_le + |@(O_trans … (λx.MSC (max (fst x) (snd x)))) + [%{2} %{0} #x #_ cases (surj_pair x) #a * #b #eqx >eqx + >fst_pair >snd_pair @(transitive_le … (MSC_pair …)) + whd in ⊢ (??%); @le_plus + [@monotonic_MSC @(le_maxl … (le_n …)) + |>commutative_times (times_n_1 (MSC x)) >commutative_times @le_times + [// | @monotonic_MSC // ]] +@(O_trans … (coroll2 ??)) + [#n #a #b #leab #ltb >fst_pair >fst_pair >snd_pair >snd_pair + cut (b ≤ n) [@(transitive_le … (le_snd …)) @lt_to_le //] #lebn + cut (max a n = n) + [normalize >le_to_leb_true [//|@(transitive_le … leab lebn)]] #maxa + cut (max b n = n) [normalize >le_to_leb_true //] #maxb + @le_plus + [@le_plus [>big_def >big_def >maxa >maxb //] + @le_times + [/2 by monotonic_le_minus_r/ + |@monotonic_sU // @hantimono [@le_S_S // |@ltb] + ] + |@monotonic_sU // @hantimono [@le_S_S // |@ltb] + ] + |@le_to_O #n >fst_pair >snd_pair + cut (max (fst n) n = n) [normalize >le_to_leb_true //] #Hmax >Hmax + >associative_plus >distributive_times_plus + @le_plus [@le_times [@le_S // |>big_def >Hmax //] |//] + ] +qed.*) + +definition sg ≝ λh,x. + (S (snd x-fst x))*MSC 〈x,x〉 + (snd x-fst x)*(S(snd x-fst x))*sU 〈x,〈snd x,h (S (fst x)) (snd x)〉〉. + +lemma sg_def : ∀h,a,b. + sg h 〈a,b〉 = (S (b-a))*MSC 〈〈a,b〉,〈a,b〉〉 + + (b-a)*(S(b-a))*sU 〈〈a,b〉,〈b,h (S a) b〉〉. +#h #a #b whd in ⊢ (??%?); >fst_pair >snd_pair // +qed. + +(*lemma compl_g11 : ∀h. + constructible (λx. h (fst x) (snd x)) → + (∀n. monotonic ? le (h n)) → + (∀n,a,b. a ≤ b → b ≤ n → h b n ≤ h a n) → + CF (sg h) (unary_g h). +#h #hconstr #Hm #Ham @compl_g1 @(compl_g9 h hconstr Hm Ham) +qed.*) + +(**************************** closing the argument ****************************) + +let rec h_of_aux (r:nat →nat) (c,d,b:nat) on d : nat ≝ + match d with + [ O ⇒ c + | S d1 ⇒ (S d)*(MSC 〈〈b-d,b〉,〈b-d,b〉〉) + + d*(S d)*sU 〈〈b-d,b〉,〈b,r (h_of_aux r c d1 b)〉〉]. + +lemma h_of_aux_O: ∀r,c,b. + h_of_aux r c O b = c. +// qed. + +lemma h_of_aux_S : ∀r,c,d,b. + h_of_aux r c (S d) b = + (S (S d))*(MSC 〈〈b-(S d),b〉,〈b-(S d),b〉〉) + + (S d)*(S (S d))*sU 〈〈b-(S d),b〉,〈b,r(h_of_aux r c d b)〉〉. +// qed. + +lemma h_of_aux_prim_rec : ∀r,c,n,b. h_of_aux r c n b = + prim_rec (λx.c) + (λx.let d ≝ S(fst x) in + let b ≝ snd (snd x) in + (S d)*(MSC 〈〈b-d,b〉,〈b-d,b〉〉) + + d*(S d)*sU 〈〈b-d,b〉,〈b,r (fst (snd x))〉〉) n b. +#r #c #n #b elim n + [>h_of_aux_O normalize // + |#n1 #Hind >h_of_aux_S >prim_rec_S >snd_pair >snd_pair >fst_pair + >fst_pair fst_pair >snd_pair >(minus_to_0 … Hle) // +qed. + +lemma h_of_def: ∀r,a,b.h_of r 〈a,b〉 = + let m ≝ max a b in + h_of_aux r (MSC 〈〈m,m〉,〈m,m〉〉) (b - a) b. +#r #a #b normalize >fst_pair >snd_pair // +qed. + +lemma mono_h_of_aux: ∀r.(∀x. x ≤ r x) → monotonic ? le r → + ∀d,d1,c,c1,b,b1.c ≤ c1 → d ≤ d1 → b ≤ b1 → + h_of_aux r c d b ≤ h_of_aux r c1 d1 b1. +#r #Hr #monor #d #d1 lapply d -d elim d1 + [#d #c #c1 #b #b1 #Hc #Hd @(le_n_O_elim ? Hd) #leb + >h_of_aux_O >h_of_aux_O // + |#m #Hind #d #c #c1 #b #b1 #lec #led #leb cases (le_to_or_lt_eq … led) + [#ltd @(transitive_le … (Hind … lec ? leb)) [@le_S_S_to_le @ltd] + >h_of_aux_S @(transitive_le ???? (le_plus_n …)) + >(times_n_1 (h_of_aux r c1 m b1)) in ⊢ (?%?); + >commutative_times @le_times [//|@(transitive_le … (Hr ?)) @sU_le] + |#Hd >Hd >h_of_aux_S >h_of_aux_S + cut (b-S m ≤ b1 - S m) [/2 by monotonic_le_minus_l/] #Hb1 + @le_plus [@le_times //] + [@monotonic_MSC @le_pair @le_pair // + |@le_times [//] @monotonic_sU + [@le_pair // |// |@monor @Hind //] + ] + ] + ] +qed. + +lemma mono_h_of2: ∀r.(∀x. x ≤ r x) → monotonic ? le r → + ∀i,b,b1. b ≤ b1 → h_of r 〈i,b〉 ≤ h_of r 〈i,b1〉. +#r #Hr #Hmono #i #a #b #leab >h_of_def >h_of_def +cut (max i a ≤ max i b) + [@to_max + [@(le_maxl … (le_n …))|@(transitive_le … leab) @(le_maxr … (le_n …))]] +#Hmax @(mono_h_of_aux r Hr Hmono) + [@monotonic_MSC @le_pair @le_pair @Hmax |/2 by monotonic_le_minus_l/ |@leab] +qed. + +axiom h_of_constr : ∀r:nat →nat. + (∀x. x ≤ r x) → monotonic ? le r → constructible r → + constructible (h_of r). + +(*lemma speed_compl: ∀r:nat →nat. + (∀x. x ≤ r x) → monotonic ? le r → constructible r → + CF (h_of r) (unary_g (λi,x. r(h_of r 〈i,x〉))). +#r #Hr #Hmono #Hconstr @(monotonic_CF … (compl_g11 …)) + [#x cases (surj_pair x) #a * #b #eqx >eqx + >sg_def cases (decidable_le b a) + [#leba >(minus_to_0 … leba) normalize in ⊢ (?%?); + h_of_def + cut (max a b = a) + [normalize cases (le_to_or_lt_eq … leba) + [#ltba >(lt_to_leb_false … ltba) % + |#eqba (le_to_leb_true … (le_n ?)) % ]] + #Hmax >Hmax normalize >(minus_to_0 … leba) normalize + @monotonic_MSC @le_pair @le_pair // + |#ltab >h_of_def >h_of_def + cut (max a b = b) + [normalize >(le_to_leb_true … ) [%] @lt_to_le @not_le_to_lt @ltab] + #Hmax >Hmax + cut (max (S a) b = b) + [whd in ⊢ (??%?); >(le_to_leb_true … ) [%] @not_le_to_lt @ltab] + #Hmax1 >Hmax1 + cut (∃d.b - a = S d) + [%{(pred(b-a))} >S_pred [//] @lt_plus_to_minus_r @not_le_to_lt @ltab] + * #d #eqd >eqd + cut (b-S a = d) [//] #eqd1 >eqd1 >h_of_aux_S >eqd1 + cut (b - S d = a) + [@plus_to_minus >commutative_plus @minus_to_plus + [@lt_to_le @not_le_to_lt // | //]] #eqd2 >eqd2 + normalize // + ] + |#n #a #b #leab #lebn >h_of_def >h_of_def + cut (max a n = n) + [normalize >le_to_leb_true [%|@(transitive_le … leab lebn)]] #Hmaxa + cut (max b n = n) + [normalize >(le_to_leb_true … lebn) %] #Hmaxb + >Hmaxa >Hmaxb @Hmono @(mono_h_of_aux r … Hr Hmono) // /2 by monotonic_le_minus_r/ + |#n #a #b #leab @Hmono @(mono_h_of2 … Hr Hmono … leab) + |@(constr_comp … Hconstr Hr) @(ext_constr (h_of r)) + [#x cases (surj_pair x) #a * #b #eqx >eqx >fst_pair >snd_pair //] + @(h_of_constr r Hr Hmono Hconstr) + ] +qed. + +lemma speed_compl_i: ∀r:nat →nat. + (∀x. x ≤ r x) → monotonic ? le r → constructible r → + ∀i. CF (λx.h_of r 〈i,x〉) (λx.g (λi,x. r(h_of r 〈i,x〉)) i x). +#r #Hr #Hmono #Hconstr #i +@(ext_CF (λx.unary_g (λi,x. r(h_of r 〈i,x〉)) 〈i,x〉)) + [#n whd in ⊢ (??%%); @eq_f @sym_eq >fst_pair >snd_pair %] +@smn @(ext_CF … (speed_compl r Hr Hmono Hconstr)) #n // +qed.*) + +(**************************** the speedup theorem *****************************) +(*theorem pseudo_speedup: + ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r → constructible r → + ∃f.∀sf. CF sf f → ∃g,sg. f ≈ g ∧ CF sg g ∧ O sf (r ∘ sg). +(* ∃m,a.∀n. a≤n → r(sg a) < m * sf n. *) +#r #Hr #Hmono #Hconstr +(* f is (g (λi,x. r(h_of r 〈i,x〉)) 0) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) 0)} #sf * #H * #i * +#Hcodei #HCi +(* g is (g (λi,x. r(h_of r 〈i,x〉)) (S i)) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) (S i))} +(* sg is (λx.h_of r 〈i,x〉) *) +%{(λx. h_of r 〈S i,x〉)} +lapply (speed_compl_i … Hr Hmono Hconstr (S i)) #Hg +%[%[@condition_1 |@Hg] + |cases Hg #H1 * #j * #Hcodej #HCj + lapply (condition_2 … Hcodei) #Hcond2 (* @not_to_not *) + cases HCi #m * #a #Ha %{m} %{(max (S i) a)} #n #ltin @lt_to_le @not_le_to_lt + @(not_to_not … Hcond2) -Hcond2 #Hlesf %{n} % + [@(transitive_le … ltin) @(le_maxl … (le_n …))] + cases (Ha n ?) [2: @(transitive_le … ltin) @(le_maxr … (le_n …))] + #y #Uy %{y} @(monotonic_U … Uy) @(transitive_le … Hlesf) // + ] +qed. + +theorem pseudo_speedup': + ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r → constructible r → + ∃f.∀sf. CF sf f → ∃g,sg. f ≈ g ∧ CF sg g ∧ + (* ¬ O (r ∘ sg) sf. *) + ∃m,a.∀n. a≤n → r(sg a) < m * sf n. +#r #Hr #Hmono #Hconstr +(* f is (g (λi,x. r(h_of r 〈i,x〉)) 0) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) 0)} #sf * #H * #i * +#Hcodei #HCi +(* g is (g (λi,x. r(h_of r 〈i,x〉)) (S i)) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) (S i))} +(* sg is (λx.h_of r 〈i,x〉) *) +%{(λx. h_of r 〈S i,x〉)} +lapply (speed_compl_i … Hr Hmono Hconstr (S i)) #Hg +%[%[@condition_1 |@Hg] + |cases Hg #H1 * #j * #Hcodej #HCj + lapply (condition_2 … Hcodei) #Hcond2 (* @not_to_not *) + cases HCi #m * #a #Ha + %{m} %{(max (S i) a)} #n #ltin @not_le_to_lt @(not_to_not … Hcond2) -Hcond2 #Hlesf + %{n} % [@(transitive_le … ltin) @(le_maxl … (le_n …))] + cases (Ha n ?) [2: @(transitive_le … ltin) @(le_maxr … (le_n …))] + #y #Uy %{y} @(monotonic_U … Uy) @(transitive_le … Hlesf) + @Hmono @(mono_h_of2 … Hr Hmono … ltin) + ] +qed.*) + \ No newline at end of file -- 2.39.2