1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "legacy_1/coq/defs.ma".
20 \forall (P: Type[0]).(False \to P)
22 \lambda (P: Type[0]).(\lambda (f: False).(match f in False with [])).
25 \forall (P: Prop).(False \to P)
27 \lambda (P: Prop).(False_rect P).
30 \forall (A: Prop).(\forall (B: Prop).(\forall (P: Type[0]).(((A \to (B \to
31 P))) \to ((land A B) \to P))))
33 \lambda (A: Prop).(\lambda (B: Prop).(\lambda (P: Type[0]).(\lambda (f: ((A
34 \to (B \to P)))).(\lambda (a: (land A B)).(match a with [(conj x x0)
35 \Rightarrow (f x x0)]))))).
38 \forall (A: Prop).(\forall (B: Prop).(\forall (P: Prop).(((A \to (B \to P)))
39 \to ((land A B) \to P))))
41 \lambda (A: Prop).(\lambda (B: Prop).(\lambda (P: Prop).(land_rect A B P))).
44 \forall (A: Prop).(\forall (B: Prop).(\forall (P: Prop).(((A \to P)) \to
45 (((B \to P)) \to ((or A B) \to P)))))
47 \lambda (A: Prop).(\lambda (B: Prop).(\lambda (P: Prop).(\lambda (f: ((A \to
48 P))).(\lambda (f0: ((B \to P))).(\lambda (o: (or A B)).(match o with
49 [(or_introl x) \Rightarrow (f x) | (or_intror x) \Rightarrow (f0 x)])))))).
52 \forall (A: Type[0]).(\forall (P: ((A \to Prop))).(\forall (P0:
53 Prop).(((\forall (x: A).((P x) \to P0))) \to ((ex A P) \to P0))))
55 \lambda (A: Type[0]).(\lambda (P: ((A \to Prop))).(\lambda (P0:
56 Prop).(\lambda (f: ((\forall (x: A).((P x) \to P0)))).(\lambda (e: (ex A
57 P)).(match e with [(ex_intro x x0) \Rightarrow (f x x0)]))))).
60 \forall (A: Type[0]).(\forall (P: ((A \to Prop))).(\forall (Q: ((A \to
61 Prop))).(\forall (P0: Prop).(((\forall (x: A).((P x) \to ((Q x) \to P0))))
62 \to ((ex2 A P Q) \to P0)))))
64 \lambda (A: Type[0]).(\lambda (P: ((A \to Prop))).(\lambda (Q: ((A \to
65 Prop))).(\lambda (P0: Prop).(\lambda (f: ((\forall (x: A).((P x) \to ((Q x)
66 \to P0))))).(\lambda (e: (ex2 A P Q)).(match e with [(ex_intro2 x x0 x1)
67 \Rightarrow (f x x0 x1)])))))).
70 \forall (A: Type[0]).(\forall (x: A).(\forall (P: ((A \to Type[0]))).((P x)
71 \to (\forall (y: A).((eq A x y) \to (P y))))))
73 \lambda (A: Type[0]).(\lambda (x: A).(\lambda (P: ((A \to
74 Type[0]))).(\lambda (f: (P x)).(\lambda (y: A).(\lambda (e: (eq A x
75 y)).(match e with [refl_equal \Rightarrow f])))))).
78 \forall (A: Type[0]).(\forall (x: A).(\forall (P: ((A \to Prop))).((P x) \to
79 (\forall (y: A).((eq A x y) \to (P y))))))
81 \lambda (A: Type[0]).(\lambda (x: A).(\lambda (P: ((A \to Prop))).(eq_rect A
84 let rec le_ind (n: nat) (P: (nat \to Prop)) (f: P n) (f0: (\forall (m:
85 nat).((le n m) \to ((P m) \to (P (S m)))))) (n0: nat) (l: le n n0) on l: P n0
86 \def match l with [le_n \Rightarrow f | (le_S m l0) \Rightarrow (f0 m l0
87 ((le_ind n P f f0) m l0))].
89 let rec Acc_ind (A: Type[0]) (R: (A \to (A \to Prop))) (P: (A \to Prop)) (f:
90 (\forall (x: A).(((\forall (y: A).((R y x) \to (Acc A R y)))) \to (((\forall
91 (y: A).((R y x) \to (P y)))) \to (P x))))) (a: A) (a0: Acc A R a) on a0: P a
92 \def match a0 with [(Acc_intro x a1) \Rightarrow (f x a1 (\lambda (y:
93 A).(\lambda (r0: (R y x)).((Acc_ind A R P f) y (a1 y r0)))))].