qed.
(* We conclude this section with the proof of the main semantic properties
-of ⊙ and ⊛.)
+of ⊙ and ⊛. *)
lemma sem_odot:
∀S.∀e1,e2: \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S. \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 e2} \ 5a title="extensional equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 61 \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1}\ 5a title="cat lang" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 \ 5a title="in_l" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{\ 5a title="forget" href="cic:/fakeuri.def(1)"\ 6|\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 e2|} \ 5a title="union" href="cic:/fakeuri.def(1)"\ 6∪\ 5/a\ 6 \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e2}.
-include "re.ma".
-include "basics/listb.ma".
+(*
+\ 5h1\ 6Moves\ 5/h1\ 6*)
+
+include "chapter8.ma".
let rec move (S: DeqSet) (x:S) (E: pitem S) on E : pre S ≝
match E with
|#Hfalse >moves_cons >not_occur_to_pit // >Hfalse /2/
]
]
-qed.
-
+qed.
\ No newline at end of file