(* *)
(**************************************************************************)
-include "basic_2/notation/relations/pconv_4.ma".
-include "basic_2/reduction/cpr.ma".
+include "basic_2/notation/relations/pconv_5.ma".
+include "basic_2/rt_transition/cpm.ma".
-(* CONTEXT-SENSITIVE PARALLEL CONVERSION ON TERMS ***************************)
+(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
-definition cpc: relation4 genv lenv term term ≝
- λG,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 ∨ ⦃G, L⦄ ⊢ T2 ➡ T1.
+definition cpc: sh → relation4 genv lenv term term ≝
+ λh,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h] T2 ∨ ⦃G, L⦄ ⊢ T2 ➡[h] T1.
interpretation
- "context-sensitive parallel conversion (term)"
- 'PConv G L T1 T2 = (cpc G L T1 T2).
+ "context-sensitive parallel r-conversion (term)"
+ 'PConv h G L T1 T2 = (cpc h G L T1 T2).
(* Basic properties *********************************************************)
-lemma cpc_refl: ∀G,L. reflexive … (cpc G L).
+lemma cpc_refl: ∀h,G,L. reflexive … (cpc h G L).
/2 width=1 by or_intror/ qed.
-lemma cpc_sym: ∀G,L. symmetric … (cpc L G).
-#G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
+lemma cpc_sym: ∀h,G,L. symmetric … (cpc h L G).
+#h #G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
qed-.
(* Basic forward lemmas *****************************************************)
-lemma cpc_fwd_cpr: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌ T2 → ∃∃T. ⦃G, L⦄ ⊢ T1 ➡ T & ⦃G, L⦄ ⊢ T2 ➡ T.
-#G #L #T1 #T2 * /2 width=3 by ex2_intro/
+lemma cpc_fwd_cpr: ∀h,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌[h] T2 →
+ ∃∃T. ⦃G, L⦄ ⊢ T1 ➡[h] T & ⦃G, L⦄ ⊢ T2 ➡[h] T.
+#h #G #L #T1 #T2 * /2 width=3 by ex2_intro/
qed-.
include "basic_2/conversion/cpc.ma".
-(* CONTEXT-SENSITIVE PARALLEL CONVERSION ON TERMS ***************************)
+(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
(* Main properties **********************************************************)
-theorem cpc_conf: ∀G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌ T1 → ⦃G, L⦄ ⊢ T0 ⬌ T2 →
- ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌ T & ⦃G, L⦄ ⊢ T2 ⬌ T.
+theorem cpc_conf: ∀h,G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌[h] T1 → ⦃G, L⦄ ⊢ T0 ⬌[h] T2 →
+ ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌[h] T & ⦃G, L⦄ ⊢ T2 ⬌[h] T.
/3 width=3 by cpc_sym, ex2_intro/ qed-.
--- /dev/null
+(*
+(* Properties with supclosure ***********************************************)
+
+lemma lpx_lleq_fqu_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+ ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
+ ∃∃K2. ⦃G1, K1, T1⦄ ⊐ ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+[ #I #G1 #L1 #V1 #X #H1 #H2 elim (lpx_inv_pair2 … H1) -H1
+ #K0 #V0 #H1KL1 #_ #H destruct
+ elim (lleq_inv_lref_ge_dx … H2 ? I L1 V1) -H2 //
+ #K1 #H #H2KL1 lapply (drop_inv_O2 … H) -H #H destruct
+ /2 width=4 by fqu_lref_O, ex3_intro/
+| * [ #a ] #I #G1 #L1 #V1 #T1 #K1 #HLK1 #H
+ [ elim (lleq_inv_bind … H)
+ | elim (lleq_inv_flat … H)
+ ] -H /2 width=4 by fqu_pair_sn, ex3_intro/
+| #a #I #G1 #L1 #V1 #T1 #K1 #HLK1 #H elim (lleq_inv_bind_O … H) -H
+ /3 width=4 by lpx_pair, fqu_bind_dx, ex3_intro/
+| #I #G1 #L1 #V1 #T1 #K1 #HLK1 #H elim (lleq_inv_flat … H) -H
+ /2 width=4 by fqu_flat_dx, ex3_intro/
+| #G1 #L1 #L #T1 #U1 #k #HL1 #HTU1 #K1 #H1KL1 #H2KL1
+ elim (drop_O1_le (Ⓕ) (k+1) K1)
+ [ #K #HK1 lapply (lleq_inv_lift_le … H2KL1 … HK1 HL1 … HTU1 ?) -H2KL1 //
+ #H2KL elim (lpx_drop_trans_O1 … H1KL1 … HL1) -L1
+ #K0 #HK10 #H1KL lapply (drop_mono … HK10 … HK1) -HK10 #H destruct
+ /3 width=4 by fqu_drop, ex3_intro/
+ | lapply (drop_fwd_length_le2 … HL1) -L -T1 -o
+ lapply (lleq_fwd_length … H2KL1) //
+ ]
+]
+qed-.
+
+lemma lpx_lleq_fquq_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+ ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
+ ∃∃K2. ⦃G1, K1, T1⦄ ⊐⸮ ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #K1 #H1KL1 #H2KL1
+elim (fquq_inv_gen … H) -H
+[ #H elim (lpx_lleq_fqu_trans … H … H1KL1 H2KL1) -L1
+ /3 width=4 by fqu_fquq, ex3_intro/
+| * #HG #HL #HT destruct /2 width=4 by ex3_intro/
+]
+qed-.
+
+lemma lpx_lleq_fqup_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
+ ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
+ ∃∃K2. ⦃G1, K1, T1⦄ ⊐+ ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind … H) -G2 -L2 -T2
+[ #G2 #L2 #T2 #H #K1 #H1KL1 #H2KL1 elim (lpx_lleq_fqu_trans … H … H1KL1 H2KL1) -L1
+ /3 width=4 by fqu_fqup, ex3_intro/
+| #G #G2 #L #L2 #T #T2 #_ #HT2 #IHT1 #K1 #H1KL1 #H2KL1 elim (IHT1 … H2KL1) // -L1
+ #K #HT1 #H1KL #H2KL elim (lpx_lleq_fqu_trans … HT2 … H1KL H2KL) -L
+ /3 width=5 by fqup_strap1, ex3_intro/
+]
+qed-.
+
+lemma lpx_lleq_fqus_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+ ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
+ ∃∃K2. ⦃G1, K1, T1⦄ ⊐* ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #K1 #H1KL1 #H2KL1
+elim (fqus_inv_gen … H) -H
+[ #H elim (lpx_lleq_fqup_trans … H … H1KL1 H2KL1) -L1
+ /3 width=4 by fqup_fqus, ex3_intro/
+| * #HG #HL #HT destruct /2 width=4 by ex3_intro/
+]
+qed-.
+*)
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************)
-
-notation "hvbox( ⦃ term 46 G, break term 46 L ⦄ ⊢ break term 46 T1 ⬌ break term 46 T2 )"
- non associative with precedence 45
- for @{ 'PConv $G $L $T1 $T2 }.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************)
+
+notation "hvbox( ⦃ term 46 G, break term 46 L ⦄ ⊢ break term 46 T1 ⬌ [ break term 46 h ] break term 46 T2 )"
+ non associative with precedence 45
+ for @{ 'PConv $h $G $L $T1 $T2 }.
#g2 #H #H2 destruct /3 width=5 by lexs_next/
]
qed-.
+
+lemma lexs_sle_split: ∀R1,R2,RP. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) →
+ ∀f,L1,L2. L1 ⦻*[R1, RP, f] L2 → ∀g. f ⊆ g →
+ ∃∃L. L1 ⦻*[R1, RP, g] L & L ⦻*[R2, cfull, f] L2.
+#R1 #R2 #RP #HR1 #HR2 #f #L1 #L2 #H elim H -f -L1 -L2
+[ /2 width=3 by lexs_atom, ex2_intro/ ]
+#f #I #L1 #L2 #V1 #V2 #_ #HV12 #IH #y #H
+[ elim (sle_inv_nx … H ??) -H [ |*: // ] #g #Hfg #H destruct
+ elim (IH … Hfg) -IH -Hfg /3 width=5 by lexs_next, ex2_intro/
+| elim (sle_inv_px … H ??) -H [1,3: * |*: // ] #g #Hfg #H destruct
+ elim (IH … Hfg) -IH -Hfg /3 width=5 by lexs_next, lexs_push, ex2_intro/
+]
+qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/static/lfdeq_fqup.ma".
+include "basic_2/rt_computation/lfsx.ma".
+
+(* STRONGLY NORMALIZING LOCAL ENV.S FOR UNCOUNTED PARALLEL RT-TRANSITION ****)
+
+(* Advanced properties ******************************************************)
+
+(* Basic_2A1: was: lsx_atom *)
+lemma lfsx_atom: ∀h,o,G,T. G ⊢ ⬈*[h, o, T] 𝐒⦃⋆⦄.
+#h #o #G #T @lfsx_intro
+#Y #H #HI lapply (lfpx_inv_atom_sn … H) -H
+#H destruct elim HI -HI //
+qed.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "basic_2/static/lfdeq_fqus.ma".
-include "basic_2/rt_computation/lfsx.ma".
-
-(* STRONGLY NORMALIZING LOCAL ENV.S FOR UNCOUNTED PARALLEL RT-TRANSITION ****)
-
-(* Advanced properties ******************************************************)
-
-(* Basic_2A1: was: lsx_atom *)
-lemma lfsx_atom: ∀h,o,G,T. G ⊢ ⬈*[h, o, T] 𝐒⦃⋆⦄.
-#h #o #G #T @lfsx_intro
-#Y #H #HI lapply (lfpx_inv_atom_sn … H) -H
-#H destruct elim HI -HI //
-qed.
(* STRONGLY NORMALIZING LOCAL ENV.S FOR UNCOUNTED PARALLEL RT-TRANSITION ****)
-axiom pippo: ∀h,o,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, V] L2 →
- ∃∃L. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L & L ≡[h, o, V] L2.
-
(* Advanced properties ******************************************************)
lemma lfsx_lfdeq_trans: ∀h,o,G,L1,T. G ⊢ ⬈*[h, o, T] 𝐒⦃L1⦄ →
(* Advanced forward lemmas **************************************************)
-(* Basic_2A1: was: lsx_fwd_bind_sn *)
-lemma lfsx_fwd_bind_sn: ∀h,o,p,I,G,L,V,T. G ⊢ ⬈*[h, o, ⓑ{p,I}V.T] 𝐒⦃L⦄ →
+(* Basic_2A1: includes: lsx_fwd_bind_sn lsx_fwd_flat_sn *)
+(* Basic_2A1: was: lsx_fwd_pair_sn *)
+lemma lfsx_fwd_pair_sn: ∀h,o,I,G,L,V,T. G ⊢ ⬈*[h, o, ②{I}V.T] 𝐒⦃L⦄ →
G ⊢ ⬈*[h, o, V] 𝐒⦃L⦄.
-#h #o #p #I #G #L #V #T #H @(lfsx_ind … H) -L
-#L1 #_ #IHL1 @lfsx_intro
-#L2 #H #HnL12 elim (pippo … o p I … T H) -H
-/6 width=4 by lfsx_lfdeq_trans, lfdeq_trans, lfdeq_fwd_bind_sn/
-qed-.
-(*
-lemma lfsx_fwd_flat_sn: ∀h,o,I,G,L,V,T,l. G ⊢ ⬈*[h, o, ⓕ{I}V.T, l] L →
- G ⊢ ⬈*[h, o, V, l] L.
-#h #o #I #G #L #V #T #l #H @(lfsx_ind … H) -L
+#h #o #I #G #L #V #T #H @(lfsx_ind … H) -L
#L1 #_ #IHL1 @lfsx_intro
-#L2 #HL12 #HV @IHL1 /3 width=3 by lfdeq_fwd_flat_sn/
+#L2 #H #HnL12 elim (lfpx_pair_sn_split … o I … T H) -H
+/6 width=4 by lfsx_lfdeq_trans, lfdeq_trans, lfdeq_fwd_pair_sn/
qed-.
-lemma lfsx_fwd_flat_dx: ∀h,o,I,G,L,V,T,l. G ⊢ ⬈*[h, o, ⓕ{I}V.T, l] L →
- G ⊢ ⬈*[h, o, T, l] L.
-#h #o #I #G #L #V #T #l #H @(lfsx_ind … H) -L
-#L1 #_ #IHL1 @lfsx_intro
-#L2 #HL12 #HV @IHL1 /3 width=3 by lfdeq_fwd_flat_dx/
-qed-.
-lemma lfsx_fwd_pair_sn: ∀h,o,I,G,L,V,T,l. G ⊢ ⬈*[h, o, ②{I}V.T, l] L →
- G ⊢ ⬈*[h, o, V, l] L.
-#h #o * /2 width=4 by lfsx_fwd_bind_sn, lfsx_fwd_flat_sn/
+(* Basic_2A1: was: lsx_fwd_flat_dx *)
+lemma lfsx_fwd_flat_dx: ∀h,o,I,G,L,V,T. G ⊢ ⬈*[h, o, ⓕ{I}V.T] 𝐒⦃L⦄ →
+ G ⊢ ⬈*[h, o, T] 𝐒⦃L⦄.
+#h #o #I #G #L #V #T #H @(lfsx_ind … H) -L
+#L1 #_ #IHL1 @lfsx_intro
+#L2 #H #HnL12 elim (lfpx_flat_dx_split … o I … V … H) -H
+/6 width=4 by lfsx_lfdeq_trans, lfdeq_trans, lfdeq_fwd_flat_dx/
qed-.
-(* Basic inversion lemmas ***************************************************)
+(* Advanced inversion lemmas ************************************************)
-lemma lfsx_inv_flat: ∀h,o,I,G,L,V,T,l. G ⊢ ⬈*[h, o, ⓕ{I}V.T, l] L →
- G ⊢ ⬈*[h, o, V, l] L ∧ G ⊢ ⬈*[h, o, T, l] L.
-/3 width=3 by lfsx_fwd_flat_sn, lfsx_fwd_flat_dx, conj/ qed-.
-*)
\ No newline at end of file
+(* Basic_2A1: was: lsx_inv_flat *)
+lemma lfsx_inv_flat: ∀h,o,I,G,L,V,T. G ⊢ ⬈*[h, o, ⓕ{I}V.T] 𝐒⦃L⦄ →
+ G ⊢ ⬈*[h, o, V] 𝐒⦃L⦄ ∧ G ⊢ ⬈*[h, o, T] 𝐒⦃L⦄.
+/3 width=3 by lfsx_fwd_pair_sn, lfsx_fwd_flat_dx, conj/ qed-.
lfpxs.ma lfpxs_fqup.ma lfpxs_cpxs.ma
csx.ma csx_simple.ma csx_simple_theq.ma csx_drops.ma csx_lsubr.ma csx_gcp.ma csx_gcr.ma csx_lfpx.ma csx_cnx.ma csx_cpxs.ma csx_csx.ma
csx_vector.ma csx_cnx_vector.ma csx_csx_vector.ma
-lfsx.ma lfsx_fqup.ma
+lfsx.ma lfsx_fqup.ma lfsx_lfsx.ma
(* Properties with degree-based equivalence for local environments **********)
+lemma lfpx_pair_sn_split: ∀h,o,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, V] L2 →
+ ∃∃L. ⦃G, L1⦄ ⊢ ⬈[h, ②{I}V.T] L & L ≡[h, o, V] L2.
+/3 width=5 by lfpx_frees_conf, lfxs_pair_sn_split/ qed-.
+
+lemma lfpx_flat_dx_split: ∀h,o,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, T] L2 →
+ ∃∃L. ⦃G, L1⦄ ⊢ ⬈[h, ⓕ{I}V.T] L & L ≡[h, o, T] L2.
+/3 width=5 by lfpx_frees_conf, lfxs_flat_dx_split/ qed-.
+
lemma cpx_tdeq_conf_lexs: ∀h,o,G. R_confluent2_lfxs … (cpx h G) (cdeq h o) (cpx h G) (cdeq h o).
#h #o #G #L0 #T0 #T1 #H @(cpx_ind … H) -G -L0 -T0 -T1 /2 width=3 by ex2_intro/
[ #G #L0 #s0 #X0 #H0 #L1 #HL01 #L2 #HL02
elim (lfpx_lfdeq_conf … o … HLK2 L1)
/3 width=3 by lfdeq_sym, ex2_intro/
qed-.
-(*
-(* Properties with supclosure ***********************************************)
-
-lemma lpx_lleq_fqu_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
- ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
- ∃∃K2. ⦃G1, K1, T1⦄ ⊐ ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
-[ #I #G1 #L1 #V1 #X #H1 #H2 elim (lpx_inv_pair2 … H1) -H1
- #K0 #V0 #H1KL1 #_ #H destruct
- elim (lleq_inv_lref_ge_dx … H2 ? I L1 V1) -H2 //
- #K1 #H #H2KL1 lapply (drop_inv_O2 … H) -H #H destruct
- /2 width=4 by fqu_lref_O, ex3_intro/
-| * [ #a ] #I #G1 #L1 #V1 #T1 #K1 #HLK1 #H
- [ elim (lleq_inv_bind … H)
- | elim (lleq_inv_flat … H)
- ] -H /2 width=4 by fqu_pair_sn, ex3_intro/
-| #a #I #G1 #L1 #V1 #T1 #K1 #HLK1 #H elim (lleq_inv_bind_O … H) -H
- /3 width=4 by lpx_pair, fqu_bind_dx, ex3_intro/
-| #I #G1 #L1 #V1 #T1 #K1 #HLK1 #H elim (lleq_inv_flat … H) -H
- /2 width=4 by fqu_flat_dx, ex3_intro/
-| #G1 #L1 #L #T1 #U1 #k #HL1 #HTU1 #K1 #H1KL1 #H2KL1
- elim (drop_O1_le (Ⓕ) (k+1) K1)
- [ #K #HK1 lapply (lleq_inv_lift_le … H2KL1 … HK1 HL1 … HTU1 ?) -H2KL1 //
- #H2KL elim (lpx_drop_trans_O1 … H1KL1 … HL1) -L1
- #K0 #HK10 #H1KL lapply (drop_mono … HK10 … HK1) -HK10 #H destruct
- /3 width=4 by fqu_drop, ex3_intro/
- | lapply (drop_fwd_length_le2 … HL1) -L -T1 -o
- lapply (lleq_fwd_length … H2KL1) //
- ]
-]
-qed-.
-
-lemma lpx_lleq_fquq_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
- ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
- ∃∃K2. ⦃G1, K1, T1⦄ ⊐⸮ ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #K1 #H1KL1 #H2KL1
-elim (fquq_inv_gen … H) -H
-[ #H elim (lpx_lleq_fqu_trans … H … H1KL1 H2KL1) -L1
- /3 width=4 by fqu_fquq, ex3_intro/
-| * #HG #HL #HT destruct /2 width=4 by ex3_intro/
-]
-qed-.
-
-lemma lpx_lleq_fqup_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
- ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
- ∃∃K2. ⦃G1, K1, T1⦄ ⊐+ ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind … H) -G2 -L2 -T2
-[ #G2 #L2 #T2 #H #K1 #H1KL1 #H2KL1 elim (lpx_lleq_fqu_trans … H … H1KL1 H2KL1) -L1
- /3 width=4 by fqu_fqup, ex3_intro/
-| #G #G2 #L #L2 #T #T2 #_ #HT2 #IHT1 #K1 #H1KL1 #H2KL1 elim (IHT1 … H2KL1) // -L1
- #K #HT1 #H1KL #H2KL elim (lpx_lleq_fqu_trans … HT2 … H1KL H2KL) -L
- /3 width=5 by fqup_strap1, ex3_intro/
-]
-qed-.
-
-lemma lpx_lleq_fqus_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
- ∀K1. ⦃G1, K1⦄ ⊢ ➡[h, o] L1 → K1 ≡[T1, 0] L1 →
- ∃∃K2. ⦃G1, K1, T1⦄ ⊐* ⦃G2, K2, T2⦄ & ⦃G2, K2⦄ ⊢ ➡[h, o] L2 & K2 ≡[T2, 0] L2.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #K1 #H1KL1 #H2KL1
-elim (fqus_inv_gen … H) -H
-[ #H elim (lpx_lleq_fqup_trans … H … H1KL1 H2KL1) -L1
- /3 width=4 by fqup_fqus, ex3_intro/
-| * #HG #HL #HT destruct /2 width=4 by ex3_intro/
-]
-qed-.
-*)
(* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
+(* Advanced properties ******************************************************)
+
+lemma lfxs_pair_sn_split: ∀R1,R2. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) →
+ lexs_frees_confluent … R1 cfull →
+ ∀L1,L2,V. L1 ⦻*[R1, V] L2 → ∀I,T.
+ ∃∃L. L1 ⦻*[R1, ②{I}V.T] L & L ⦻*[R2, V] L2.
+#R1 #R2 #HR1 #HR2 #HR #L1 #L2 #V * #f #Hf #HL12 * [ #p ] #I #T
+[ elim (frees_total L1 (ⓑ{p,I}V.T)) #g #Hg
+ elim (frees_inv_bind … Hg) #y1 #y2 #H #_ #Hy
+| elim (frees_total L1 (ⓕ{I}V.T)) #g #Hg
+ elim (frees_inv_flat … Hg) #y1 #y2 #H #_ #Hy
+]
+lapply(frees_mono … H … Hf) -H #H1
+lapply (sor_eq_repl_back1 … Hy … H1) -y1 #Hy
+lapply (sor_inv_sle_sn … Hy) -y2 #Hfg
+elim (lexs_sle_split … HR1 HR2 … HL12 … Hfg) -HL12 #L #HL1 #HL2
+lapply (sle_lexs_trans … HL1 … Hfg) // #H
+elim (HR … Hf … H) -HR -Hf -H
+/4 width=7 by sle_lexs_trans, ex2_intro/
+qed-.
+
+lemma lfxs_flat_dx_split: ∀R1,R2. (∀L. reflexive … (R1 L)) → (∀L. reflexive … (R2 L)) →
+ lexs_frees_confluent … R1 cfull →
+ ∀L1,L2,T. L1 ⦻*[R1, T] L2 → ∀I,V.
+ ∃∃L. L1 ⦻*[R1, ⓕ{I}V.T] L & L ⦻*[R2, T] L2.
+#R1 #R2 #HR1 #HR2 #HR #L1 #L2 #T * #f #Hf #HL12 #I #V
+elim (frees_total L1 (ⓕ{I}V.T)) #g #Hg
+elim (frees_inv_flat … Hg) #y1 #y2 #_ #H #Hy
+lapply(frees_mono … H … Hf) -H #H2
+lapply (sor_eq_repl_back2 … Hy … H2) -y2 #Hy
+lapply (sor_inv_sle_dx … Hy) -y1 #Hfg
+elim (lexs_sle_split … HR1 HR2 … HL12 … Hfg) -HL12 #L #HL1 #HL2
+lapply (sle_lexs_trans … HL1 … Hfg) // #H
+elim (HR … Hf … H) -HR -Hf -H
+/4 width=7 by sle_lexs_trans, ex2_intro/
+qed-.
+
(* Main properties **********************************************************)
theorem lfxs_bind: ∀R,p,I,L1,L2,V1,V2,T.
]
}
]
+*)
class "blue"
[ { "conversion" * } {
- [ { "context-sensitive conversion" * } {
- [ "cpc ( ⦃?,?⦄ ⊢ ? ⬌ ? )" "cpc_cpc" * ]
+ [ { "context-sensitive r-conversion" * } {
+ [ "cpc ( ⦃?,?⦄ ⊢ ? ⬌[?] ? )" "cpc_cpc" * ]
}
]
}
]
-*)
class "sky"
[ { "rt-computation" * } {
(*
]
class "cyan"
[ { "rt-transition" * } {
- [ { "parallel rst-transition" * } {
+ [ { "uncounted rst-transition" * } {
[ "fpbq ( ⦃?,?,?⦄ ≽[?] ⦃?,?,?⦄ )" "fpbq_aaa" * ]
[ "fpb ( ⦃?,?,?⦄ ≻[?,?] ⦃?,?,?⦄ )" "fpb_lfdeq" * ]
}
basic_2/static
basic_2/i_static
basic_2/rt_transition
+basic_2/conversion
apps_2/examples/ex_cpr_omega.ma