]> matita.cs.unibo.it Git - helm.git/blob - helm/matita/library/Z/plus.ma
fixed parsing of --x=x ("'uminus" is now right associative)
[helm.git] / helm / matita / library / Z / plus.ma
1 (**************************************************************************)
2 (*       ___                                                                *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
8 (*      ||A||       E.Tassi, S.Zacchiroli                                 *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU Lesser General Public License Version 2.1         *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/Z/plus".
16
17 include "Z/z.ma".
18 include "nat/compare.ma".
19 include "nat/minus.ma".
20
21 definition Zplus :Z \to Z \to Z \def
22 \lambda x,y.
23   match x with
24     [ OZ \Rightarrow y
25     | (pos m) \Rightarrow
26         match y with
27          [ OZ \Rightarrow x
28          | (pos n) \Rightarrow (pos (pred ((S m)+(S n))))
29          | (neg n) \Rightarrow 
30               match nat_compare m n with
31                 [ LT \Rightarrow (neg (pred (n-m)))
32                 | EQ \Rightarrow OZ
33                 | GT \Rightarrow (pos (pred (m-n)))]]
34     | (neg m) \Rightarrow
35         match y with
36          [ OZ \Rightarrow x
37          | (pos n) \Rightarrow 
38               match nat_compare m n with
39                 [ LT \Rightarrow (pos (pred (n-m)))
40                 | EQ \Rightarrow OZ
41                 | GT \Rightarrow (neg (pred (m-n)))]     
42          | (neg n) \Rightarrow (neg (pred ((S m)+(S n))))]].
43
44 (*CSC: the URI must disappear: there is a bug now *)
45 interpretation "integer plus" 'plus x y = (cic:/matita/Z/plus/Zplus.con x y).
46          
47 theorem Zplus_z_OZ:  \forall z:Z. z+OZ = z.
48 intro.elim z.
49 simplify.reflexivity.
50 simplify.reflexivity.
51 simplify.reflexivity.
52 qed.
53
54 (* theorem symmetric_Zplus: symmetric Z Zplus. *)
55
56 theorem sym_Zplus : \forall x,y:Z. x+y = y+x.
57 intros.elim x.rewrite > Zplus_z_OZ.reflexivity.
58 elim y.simplify.reflexivity.
59 simplify.
60 rewrite < plus_n_Sm. rewrite < plus_n_Sm.rewrite < sym_plus.reflexivity.
61 simplify.
62 rewrite > nat_compare_n_m_m_n.
63 simplify.elim nat_compare ? ?.simplify.reflexivity.
64 simplify. reflexivity.
65 simplify. reflexivity.
66 elim y.simplify.reflexivity.
67 simplify.rewrite > nat_compare_n_m_m_n.
68 simplify.elim nat_compare ? ?.simplify.reflexivity.
69 simplify. reflexivity.
70 simplify. reflexivity.
71 simplify.rewrite < plus_n_Sm. rewrite < plus_n_Sm.rewrite < sym_plus.reflexivity.
72 qed.
73
74 theorem Zpred_Zplus_neg_O : \forall z:Z. Zpred z = (neg O)+z.
75 intros.elim z.
76 simplify.reflexivity.
77 simplify.reflexivity.
78 elim n.simplify.reflexivity.
79 simplify.reflexivity.
80 qed.
81
82 theorem Zsucc_Zplus_pos_O : \forall z:Z. Zsucc z = (pos O)+z.
83 intros.elim z.
84 simplify.reflexivity.
85 elim n.simplify.reflexivity.
86 simplify.reflexivity.
87 simplify.reflexivity.
88 qed.
89
90 theorem Zplus_pos_pos:
91 \forall n,m. (pos n)+(pos m) = (Zsucc (pos n))+(Zpred (pos m)).
92 intros.
93 elim n.elim m.
94 simplify.reflexivity.
95 simplify.reflexivity.
96 elim m.
97 simplify.rewrite < plus_n_Sm.
98 rewrite < plus_n_O.reflexivity.
99 simplify.rewrite < plus_n_Sm.
100 rewrite < plus_n_Sm.reflexivity.
101 qed.
102
103 theorem Zplus_pos_neg:
104 \forall n,m. (pos n)+(neg m) = (Zsucc (pos n))+(Zpred (neg m)).
105 intros.reflexivity.
106 qed.
107
108 theorem Zplus_neg_pos :
109 \forall n,m. (neg n)+(pos m) = (Zsucc (neg n))+(Zpred (pos m)).
110 intros.
111 elim n.elim m.
112 simplify.reflexivity.
113 simplify.reflexivity.
114 elim m.
115 simplify.reflexivity.
116 simplify.reflexivity.
117 qed.
118
119 theorem Zplus_neg_neg:
120 \forall n,m. (neg n)+(neg m) = (Zsucc (neg n))+(Zpred (neg m)).
121 intros.
122 elim n.elim m.
123 simplify.reflexivity.
124 simplify.reflexivity.
125 elim m.
126 simplify.rewrite > plus_n_Sm.reflexivity.
127 simplify.rewrite > plus_n_Sm.reflexivity.
128 qed.
129
130 theorem Zplus_Zsucc_Zpred:
131 \forall x,y. x+y = (Zsucc x)+(Zpred y).
132 intros.
133 elim x. elim y.
134 simplify.reflexivity.
135 simplify.reflexivity.
136 rewrite < Zsucc_Zplus_pos_O.
137 rewrite > Zsucc_Zpred.reflexivity.
138 elim y.rewrite < sym_Zplus.rewrite < sym_Zplus (Zpred OZ).
139 rewrite < Zpred_Zplus_neg_O.
140 rewrite > Zpred_Zsucc.
141 simplify.reflexivity.
142 rewrite < Zplus_neg_neg.reflexivity.
143 apply Zplus_neg_pos.
144 elim y.simplify.reflexivity.
145 apply Zplus_pos_neg.
146 apply Zplus_pos_pos.
147 qed.
148
149 theorem Zplus_Zsucc_pos_pos : 
150 \forall n,m. (Zsucc (pos n))+(pos m) = Zsucc ((pos n)+(pos m)).
151 intros.reflexivity.
152 qed.
153
154 theorem Zplus_Zsucc_pos_neg: 
155 \forall n,m. (Zsucc (pos n))+(neg m) = (Zsucc ((pos n)+(neg m))).
156 intros.
157 apply nat_elim2
158 (\lambda n,m. (Zsucc (pos n))+(neg m) = (Zsucc ((pos n)+(neg m)))).intro.
159 intros.elim n1.
160 simplify. reflexivity.
161 elim n2.simplify. reflexivity.
162 simplify. reflexivity.
163 intros. elim n1.
164 simplify. reflexivity.
165 simplify.reflexivity.
166 intros.
167 rewrite < (Zplus_pos_neg ? m1).
168 elim H.reflexivity.
169 qed.
170
171 theorem Zplus_Zsucc_neg_neg : 
172 \forall n,m. (Zsucc (neg n))+(neg m) = Zsucc ((neg n)+(neg m)).
173 intros.
174 apply nat_elim2
175 (\lambda n,m. ((Zsucc (neg n))+(neg m)) = Zsucc ((neg n)+(neg m))).intro.
176 intros.elim n1.
177 simplify. reflexivity.
178 elim n2.simplify. reflexivity.
179 simplify. reflexivity.
180 intros. elim n1.
181 simplify. reflexivity.
182 simplify.reflexivity.
183 intros.
184 rewrite < (Zplus_neg_neg ? m1).
185 reflexivity.
186 qed.
187
188 theorem Zplus_Zsucc_neg_pos: 
189 \forall n,m. Zsucc (neg n)+(pos m) = Zsucc ((neg n)+(pos m)).
190 intros.
191 apply nat_elim2
192 (\lambda n,m. (Zsucc (neg n))+(pos m) = Zsucc ((neg n)+(pos m))).
193 intros.elim n1.
194 simplify. reflexivity.
195 elim n2.simplify. reflexivity.
196 simplify. reflexivity.
197 intros. elim n1.
198 simplify. reflexivity.
199 simplify.reflexivity.
200 intros.
201 rewrite < H.
202 rewrite < (Zplus_neg_pos ? (S m1)).
203 reflexivity.
204 qed.
205
206 theorem Zplus_Zsucc : \forall x,y:Z. (Zsucc x)+y = Zsucc (x+y).
207 intros.elim x.elim y.
208 simplify. reflexivity.
209 rewrite < Zsucc_Zplus_pos_O.reflexivity.
210 simplify.reflexivity.
211 elim y.rewrite < sym_Zplus.rewrite < sym_Zplus OZ.simplify.reflexivity.
212 apply Zplus_Zsucc_neg_neg.
213 apply Zplus_Zsucc_neg_pos.
214 elim y.
215 rewrite < sym_Zplus OZ.reflexivity.
216 apply Zplus_Zsucc_pos_neg.
217 apply Zplus_Zsucc_pos_pos.
218 qed.
219
220 theorem Zplus_Zpred: \forall x,y:Z. (Zpred x)+y = Zpred (x+y).
221 intros.
222 cut Zpred (x+y) = Zpred ((Zsucc (Zpred x))+y).
223 rewrite > Hcut.
224 rewrite > Zplus_Zsucc.
225 rewrite > Zpred_Zsucc.
226 reflexivity.
227 rewrite > Zsucc_Zpred.
228 reflexivity.
229 qed.
230
231
232 theorem associative_Zplus: associative Z Zplus.
233 change with \forall x,y,z:Z. (x + y) + z = x + (y + z). 
234 (* simplify. *)
235 intros.elim x.simplify.reflexivity.
236 elim n.rewrite < (Zpred_Zplus_neg_O (y+z)).
237 rewrite < (Zpred_Zplus_neg_O y).
238 rewrite < Zplus_Zpred.
239 reflexivity.
240 rewrite > Zplus_Zpred (neg n1).
241 rewrite > Zplus_Zpred (neg n1).
242 rewrite > Zplus_Zpred ((neg n1)+y).
243 apply eq_f.assumption.
244 elim n.rewrite < Zsucc_Zplus_pos_O.
245 rewrite < Zsucc_Zplus_pos_O.
246 rewrite > Zplus_Zsucc.
247 reflexivity.
248 rewrite > Zplus_Zsucc (pos n1).
249 rewrite > Zplus_Zsucc (pos n1).
250 rewrite > Zplus_Zsucc ((pos n1)+y).
251 apply eq_f.assumption.
252 qed.
253
254 variant assoc_Zplus : \forall x,y,z:Z.  (x+y)+z = x+(y+z)
255 \def associative_Zplus.
256
257 (* Zopp *)
258 definition Zopp : Z \to Z \def
259 \lambda x:Z. match x with
260 [ OZ \Rightarrow OZ
261 | (pos n) \Rightarrow (neg n)
262 | (neg n) \Rightarrow (pos n) ].
263
264 (*CSC: the URI must disappear: there is a bug now *)
265 interpretation "integer unary minus" 'uminus x = (cic:/matita/Z/plus/Zopp.con x).
266
267 theorem Zopp_Zplus: \forall x,y:Z. -(x+y) = -x + -y.
268 intros.
269 elim x.elim y.
270 simplify. reflexivity.
271 simplify. reflexivity.
272 simplify. reflexivity.
273 elim y.
274 simplify. reflexivity.
275 simplify. reflexivity.
276 simplify. apply nat_compare_elim.
277 intro.simplify.reflexivity.
278 intro.simplify.reflexivity.
279 intro.simplify.reflexivity.
280 elim y.
281 simplify. reflexivity.
282 simplify. apply nat_compare_elim.
283 intro.simplify.reflexivity.
284 intro.simplify.reflexivity.
285 intro.simplify.reflexivity.
286 simplify.reflexivity.
287 qed.
288
289 theorem Zopp_Zopp: \forall x:Z. --x = x.
290 intro. elim x.
291 reflexivity.reflexivity.reflexivity.
292 qed.
293
294 theorem Zplus_Zopp: \forall x:Z. x+ -x = OZ.
295 intro.elim x.
296 apply refl_eq.
297 simplify.
298 rewrite > nat_compare_n_n.
299 simplify.apply refl_eq.
300 simplify.
301 rewrite > nat_compare_n_n.
302 simplify.apply refl_eq.
303 qed.
304