]> matita.cs.unibo.it Git - helm.git/blob - helm/matita/library/logic/equality.ma
added \neq notation
[helm.git] / helm / matita / library / logic / equality.ma
1 (**************************************************************************)
2 (*       ___                                                                *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
8 (*      ||A||       E.Tassi, S.Zacchiroli                                 *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU Lesser General Public License Version 2.1         *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/logic/equality/".
16
17 include "higher_order_defs/relations.ma".
18 include "logic/connectives.ma".
19
20 inductive eq (A:Type) (x:A) : A \to Prop \def
21     refl_eq : eq A x x.
22
23 (*CSC: the URI must disappear: there is a bug now *)
24 interpretation "leibnitz's equality"
25    'eq x y = (cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y).
26 (*CSC: the URI must disappear: there is a bug now *)
27 interpretation "leibnitz's non-equality"
28   'neq x y = (cic:/matita/logic/connectives/Not.con
29     (cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y)).
30
31 theorem reflexive_eq : \forall A:Type. reflexive A (eq A).
32 simplify.intros.apply refl_eq.
33 qed.
34     
35 theorem symmetric_eq: \forall A:Type. symmetric A (eq A).
36 simplify.intros.elim H. apply refl_eq.
37 qed.
38
39 theorem sym_eq : \forall A:Type.\forall x,y:A. x=y  \to y=x
40 \def symmetric_eq.
41
42 theorem transitive_eq : \forall A:Type. transitive A (eq A).
43 simplify.intros.elim H1.assumption.
44 qed.
45
46 theorem trans_eq : \forall A:Type.\forall x,y,z:A. x=y  \to y=z \to x=z
47 \def transitive_eq.
48
49 theorem eq_elim_r:
50  \forall A:Type.\forall x:A. \forall P: A \to Prop.
51    P x \to \forall y:A. y=x \to P y.
52 intros. elim sym_eq ? ? ? H1.assumption.
53 qed.
54
55 default "equality"
56  cic:/matita/logic/equality/eq.ind
57  cic:/matita/logic/equality/sym_eq.con
58  cic:/matita/logic/equality/trans_eq.con
59  cic:/matita/logic/equality/eq_ind.con
60  cic:/matita/logic/equality/eq_elim_r.con. 
61  
62 theorem eq_f: \forall  A,B:Type.\forall f:A\to B.
63 \forall x,y:A. x=y \to f x = f y.
64 intros.elim H.reflexivity.
65 qed.
66
67 theorem eq_f2: \forall  A,B,C:Type.\forall f:A\to B \to C.
68 \forall x1,x2:A. \forall y1,y2:B.
69 x1=x2 \to y1=y2 \to f x1 y1 = f x2 y2.
70 intros.elim H1.elim H.reflexivity.
71 qed.