]> matita.cs.unibo.it Git - helm.git/blob - helm/matita/library/logic/equality.ma
ported to new syntactic requirement about terms being surrounded by parens
[helm.git] / helm / matita / library / logic / equality.ma
1 (**************************************************************************)
2 (*       ___                                                                *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
8 (*      ||A||       E.Tassi, S.Zacchiroli                                 *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU Lesser General Public License Version 2.1         *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/logic/equality/".
16
17 include "higher_order_defs/relations.ma".
18
19 inductive eq (A:Type) (x:A) : A \to Prop \def
20     refl_eq : eq A x x.
21
22 (*CSC: the URI must disappear: there is a bug now *)
23 interpretation "leibnitz's equality"
24    'eq x y = (cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y).
25 (*CSC: the URI must disappear: there is a bug now *)
26 interpretation "leibnitz's non-equality"
27   'neq x y = (cic:/matita/logic/connectives/Not.con
28     (cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y)).
29
30 theorem reflexive_eq : \forall A:Type. reflexive A (eq A).
31 simplify.intros.apply refl_eq.
32 qed.
33     
34 theorem symmetric_eq: \forall A:Type. symmetric A (eq A).
35 simplify.intros.elim H. apply refl_eq.
36 qed.
37
38 theorem sym_eq : \forall A:Type.\forall x,y:A. x=y  \to y=x
39 \def symmetric_eq.
40
41 theorem transitive_eq : \forall A:Type. transitive A (eq A).
42 simplify.intros.elim H1.assumption.
43 qed.
44
45 theorem trans_eq : \forall A:Type.\forall x,y,z:A. x=y  \to y=z \to x=z
46 \def transitive_eq.
47
48 theorem eq_elim_r:
49  \forall A:Type.\forall x:A. \forall P: A \to Prop.
50    P x \to \forall y:A. y=x \to P y.
51 intros. elim (sym_eq ? ? ? H1).assumption.
52 qed.
53
54 default "equality"
55  cic:/matita/logic/equality/eq.ind
56  cic:/matita/logic/equality/sym_eq.con
57  cic:/matita/logic/equality/trans_eq.con
58  cic:/matita/logic/equality/eq_ind.con
59  cic:/matita/logic/equality/eq_elim_r.con. 
60  
61 theorem eq_f: \forall  A,B:Type.\forall f:A\to B.
62 \forall x,y:A. x=y \to f x = f y.
63 intros.elim H.reflexivity.
64 qed.
65
66 theorem eq_f2: \forall  A,B,C:Type.\forall f:A\to B \to C.
67 \forall x1,x2:A. \forall y1,y2:B.
68 x1=x2 \to y1=y2 \to f x1 y1 = f x2 y2.
69 intros.elim H1.elim H.reflexivity.
70 qed.
71
72 (*
73 theorem a:\forall x.x=x\land True.
74
75 2:intros;
76   split;
77   [
78     exact (refl_eq Prop x);
79   |
80     exact I;
81   ]
82 1:
83   skip
84 ]
85 qed.
86 *)
87