]> matita.cs.unibo.it Git - helm.git/blob - helm/ocaml/cic_transformations/content2pres.ml
1. folded maction are now selectable
[helm.git] / helm / ocaml / cic_transformations / content2pres.ml
1 (* Copyright (C) 2000, HELM Team.
2  * 
3  * This file is part of HELM, an Hypertextual, Electronic
4  * Library of Mathematics, developed at the Computer Science
5  * Department, University of Bologna, Italy.
6  * 
7  * HELM is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2
10  * of the License, or (at your option) any later version.
11  * 
12  * HELM is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with HELM; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20  * MA  02111-1307, USA.
21  * 
22  * For details, see the HELM World-Wide-Web page,
23  * http://cs.unibo.it/helm/.
24  *)
25
26 (***************************************************************************)
27 (*                                                                         *)
28 (*                            PROJECT HELM                                 *)
29 (*                                                                         *)
30 (*                Andrea Asperti <asperti@cs.unibo.it>                     *)
31 (*                              17/06/2003                                 *)
32 (*                                                                         *)
33 (***************************************************************************)
34
35 let rec split n l =
36   if n = 0 then [],l
37   else let l1,l2 = 
38     split (n-1) (List.tl l) in
39     (List.hd l)::l1,l2
40 ;;
41   
42
43 let is_big_general countterm p =
44   let maxsize = Cexpr2pres.maxsize in
45   let module Con = Content in
46   let rec countp current_size p =
47     if current_size > maxsize then current_size
48     else 
49       let c1 = (countcontext current_size p.Con.proof_context) in
50       if c1 > maxsize then c1
51     else 
52       let c2 = (countapplycontext c1 p.Con.proof_apply_context) in
53       if c2 > maxsize then c2
54     else 
55       countconclude c2 p.Con.proof_conclude
56
57   and 
58     countcontext current_size c =
59       List.fold_left countcontextitem current_size c
60   and
61     countcontextitem current_size e =
62       if current_size > maxsize then maxsize
63       else 
64         (match e with
65           `Declaration d -> 
66             (match d.Con.dec_name with
67                Some s -> current_size + 4 + (String.length s)
68              | None -> prerr_endline "NO NAME!!"; assert false)
69         | `Hypothesis h ->
70             (match h.Con.dec_name with
71                 Some s -> current_size + 4 + (String.length s)
72               | None -> prerr_endline "NO NAME!!"; assert false) 
73         | `Proof p -> countp current_size p
74         | `Definition d -> 
75             (match d.Con.def_name with
76                 Some s -> 
77                   let c1 = (current_size + 4 + (String.length s)) in
78                   (countterm c1 d.Con.def_term)
79               | None -> 
80                   prerr_endline "NO NAME!!"; assert false) 
81         | `Joint ho -> maxsize + 1) (* we assume is big *)
82   and 
83     countapplycontext current_size ac =
84       List.fold_left countp current_size ac
85   and 
86     countconclude current_size co =
87       if current_size > maxsize then current_size
88       else
89         let c1 = countargs current_size co.Con.conclude_args in
90         if c1 > maxsize then c1 
91       else 
92         (match co.Con.conclude_conclusion with
93            Some concl ->  countterm c1 concl
94         | None -> c1)
95   and 
96     countargs current_size args =
97       List.fold_left countarg current_size args
98   and
99     countarg current_size arg =
100       if current_size > maxsize then current_size
101       else 
102         (match arg with 
103            Con.Aux _ -> current_size
104          | Con.Premise prem -> 
105              (match prem.Con.premise_binder with
106                 Some s -> current_size + (String.length s)
107               | None -> current_size + 7) 
108          | Con.Lemma lemma -> 
109              current_size + (String.length lemma.Con.lemma_name)
110          | Con.Term t -> countterm current_size t
111          | Con.ArgProof p -> countp current_size p
112          | Con.ArgMethod s -> (maxsize + 1)) in
113   let size = (countp 0 p) in
114   (size > maxsize)
115 ;;
116
117 let is_big = is_big_general (Cexpr2pres.countterm)
118 ;;
119
120 let get_xref =
121     let module Con = Content in
122       function
123         `Declaration d  
124       | `Hypothesis d -> d.Con.dec_id
125       | `Proof p -> p.Con.proof_id
126       | `Definition d -> d.Con.def_id
127       | `Joint jo -> jo.Con.joint_id
128 ;;
129
130 let make_row ?(attrs=[]) items concl =
131   let module P = Mpresentation in
132     (match concl with 
133        P.Mtable _ -> (* big! *)
134          P.Mtable (attrs@[None,"align","baseline 1"; None,"equalrows","false";
135           None,"columnalign","left"],
136            [P.Mtr([],[P.Mtd ([],P.Mrow([],items))]);
137             P.Mtr ([],[P.Mtd ([],P.indented concl)])])
138      | _ ->  (* small *)
139        P.Mrow(attrs,items@[P.Mspace([None,"width","0.1cm"]);concl]))
140 ;;
141
142 let make_concl ?(attrs=[]) verb concl =
143   let module P = Mpresentation in
144     (match concl with 
145        P.Mtable _ -> (* big! *)
146          P.Mtable (attrs@[None,"align","baseline 1"; None,"equalrows","false";
147           None,"columnalign","left"],
148            [P.Mtr([],[P.Mtd ([],P.Mtext([None,"mathcolor","Red"],verb))]);
149             P.Mtr ([],[P.Mtd ([],P.indented concl)])])
150      | _ ->  (* small *)
151        P.Mrow(attrs,
152         [P.Mtext([None,"mathcolor","Red"],verb); 
153          P.Mspace([None,"width","0.1cm"]);
154          concl]))
155 ;;
156
157 let make_args_for_apply term2pres args =
158  let module Con = Content in
159  let module P = Mpresentation in
160  let make_arg_for_apply is_first arg row = 
161   let res =
162    match arg with 
163       Con.Aux n -> assert false
164     | Con.Premise prem -> 
165         let name = 
166           (match prem.Con.premise_binder with
167              None -> "previous"
168            | Some s -> s) in
169         P.Mi([],name)::row
170     | Con.Lemma lemma -> 
171          P.Mi([],lemma.Con.lemma_name)::row 
172     | Con.Term t -> 
173         if is_first then
174           (term2pres t)::row
175         else P.Mi([],"_")::row
176     | Con.ArgProof _ 
177     | Con.ArgMethod _ -> 
178        P.Mi([],"_")::row
179   in
180    if is_first then res else P.smallskip::res
181  in
182   match args with 
183     hd::tl -> 
184       make_arg_for_apply true hd 
185         (List.fold_right (make_arg_for_apply false) tl [])
186   | _ -> assert false
187 ;;
188
189 let rec justification term2pres p = 
190   let module Con = Content in
191   let module P = Mpresentation in
192   if ((p.Con.proof_conclude.Con.conclude_method = "Exact") or
193      ((p.Con.proof_context = []) &
194       (p.Con.proof_apply_context = []) &
195       (p.Con.proof_conclude.Con.conclude_method = "Apply"))) then
196     let pres_args = 
197       make_args_for_apply term2pres p.Con.proof_conclude.Con.conclude_args in
198     P.Mrow([],
199       P.Mtext([None,"mathcolor","Red"],"by")::P.Mspace([None,"width","0.1cm"])::
200       P.Mo([],"(")::pres_args@[P.Mo([],")")]) 
201   else proof2pres term2pres p 
202      
203 and proof2pres term2pres p =
204   let rec proof2pres p =
205     let module Con = Content in
206     let module P = Mpresentation in
207       let indent = 
208         let is_decl e = 
209           (match e with 
210              `Declaration _
211            | `Hypothesis _ -> true
212            | _ -> false) in
213         ((List.filter is_decl p.Con.proof_context) != []) in 
214       let omit_conclusion = (not indent) && (p.Con.proof_context != []) in
215       let concl = 
216         (match p.Con.proof_conclude.Con.conclude_conclusion with
217            None -> None
218          | Some t -> Some (term2pres t)) in
219       let body =
220           let presconclude = 
221             conclude2pres p.Con.proof_conclude indent omit_conclusion in
222           let presacontext = 
223             acontext2pres p.Con.proof_apply_context presconclude indent in
224           context2pres p.Con.proof_context presacontext in
225       match p.Con.proof_name with
226         None -> body
227       | Some name ->
228           let action = 
229            match concl with
230               None -> body
231 (*
232                P.Maction
233                  ([None,"actiontype","toggle" ; None,"selection","1"],
234                   [P.Mtext [] "proof" ; body])
235 *)
236             | Some ac ->
237                P.Maction
238                  ([None,"actiontype","toggle" ; None,"selection","1"],
239                   [(make_concl "proof of" ac); body])
240           in
241           P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
242               None,"columnalign","left"],
243             [P.Mtr ([],[P.Mtd ([],P.Mfenced([],[P.Mtext ([],name)]))]);
244              P.Mtr ([],[P.Mtd ([], P.indented action)])])
245 (*
246           P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
247               None,"columnalign","left";Some "helm", "xref", p.Con.proof_id],
248             [P.Mtr ([],[P.Mtd ([],P.Mfenced([],[P.Mtext ([],name)]))]);
249              P.Mtr ([],[P.Mtd ([], P.indented action)])]) *)
250
251   and context2pres c continuation =
252     (* we generate a subtable for each context element, for selection
253        purposes 
254        The table generated by the head-element does not have an xref;
255        the whole context-proof is already selectable *)
256     let module P = Mpresentation in
257     match c with
258       [] -> continuation
259     | hd::tl -> 
260         let continuation' =
261           List.fold_right
262             (fun ce continuation ->
263               let xref = get_xref ce in
264               P.Mtable([None,"align","baseline 1"; None,"equalrows","false";
265                None,"columnalign","left"; Some "helm", "xref", xref ],
266                 [P.Mtr([Some "helm", "xref", "ce_"^xref],[P.Mtd ([],ce2pres ce)]);
267                  P.Mtr([],[P.Mtd ([], continuation)])])) tl continuation in
268          let hd_xref= get_xref hd in
269          P.Mtable([None,"align","baseline 1"; None,"equalrows","false";
270            None,"columnalign","left"],
271              [P.Mtr([Some "helm", "xref", "ce_"^hd_xref],
272                [P.Mtd ([],ce2pres hd)]);
273              P.Mtr([],[P.Mtd ([], continuation')])])
274          
275   and ce2pres =
276     let module P = Mpresentation in
277     let module Con = Content in
278       function
279         `Declaration d -> 
280           (match d.Con.dec_name with
281               Some s ->
282                 let ty = term2pres d.Con.dec_type in
283                 P.Mrow ([],
284                   [P.Mtext([None,"mathcolor","Red"],"Assume");
285                    P.Mspace([None,"width","0.1cm"]);
286                    P.Mi([],s);
287                    P.Mtext([],":");
288                    ty])
289             | None -> 
290                 prerr_endline "NO NAME!!"; assert false)
291       | `Hypothesis h ->
292           (match h.Con.dec_name with
293               Some s ->
294                 let ty = term2pres h.Con.dec_type in
295                 P.Mrow ([],
296                   [P.Mtext([None,"mathcolor","Red"],"Suppose");
297                    P.Mspace([None,"width","0.1cm"]);
298                    P.Mo([],"(");
299                    P.Mi ([],s);
300                    P.Mo([],")");
301                    P.Mspace([None,"width","0.1cm"]);
302                    ty])
303             | None -> 
304                 prerr_endline "NO NAME!!"; assert false) 
305       | `Proof p -> 
306            (match  p.Con.proof_name with
307               Some "w" -> prerr_endline ("processing w");
308             | _ -> ());
309            proof2pres p 
310       | `Definition d -> 
311            (match d.Con.def_name with
312               Some s ->
313                 let term = term2pres d.Con.def_term in
314                 P.Mrow ([],
315                   [P.Mtext([],"Let ");
316                    P.Mi([],s);
317                    P.Mtext([]," = ");
318                    term])
319             | None -> 
320                 prerr_endline "NO NAME!!"; assert false) 
321       | `Joint ho -> 
322             P.Mtext ([],"jointdef")
323
324   and acontext2pres ac continuation indent =
325     let module Con = Content in
326     let module P = Mpresentation in
327     List.fold_right
328       (fun p continuation ->
329          let hd = 
330            if indent then
331              P.indented (proof2pres p)
332            else 
333              proof2pres p in
334          P.Mtable([None,"align","baseline 1"; None,"equalrows","false";
335           None,"columnalign","left"; Some "helm","xref",p.Con.proof_id],
336            [P.Mtr([Some "helm","xref","ace_"^p.Con.proof_id],[P.Mtd ([],hd)]);
337             P.Mtr([],[P.Mtd ([], continuation)])])) ac continuation 
338
339   and conclude2pres conclude indent omit_conclusion =
340     let module Con = Content in
341     let module P = Mpresentation in
342     let tconclude_body = 
343       match conclude.Con.conclude_conclusion with
344         Some t when not omit_conclusion ->
345           let concl = (term2pres t) in 
346           if conclude.Con.conclude_method = "BU_Conversion" then
347             make_concl "that is equivalent to" concl
348           else if conclude.Con.conclude_method = "FalseInd" then
349            (* false ind is in charge to add the conclusion *)
350            falseind conclude
351           else  
352             let conclude_body = conclude_aux conclude in
353             let ann_concl = 
354               if conclude.Con.conclude_method = "TD_Conversion" then
355                  make_concl "that is equivalent to" concl 
356               else make_concl "we conclude" concl in
357             P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
358               None,"columnalign","left"],
359                 [P.Mtr ([],[P.Mtd ([],conclude_body)]);
360                  P.Mtr ([],[P.Mtd ([],ann_concl)])])
361       | _ -> conclude_aux conclude in
362     if indent then 
363       P.indented (P.Mrow ([Some "helm", "xref", conclude.Con.conclude_id],
364                     [tconclude_body]))
365     else 
366       P.Mrow ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body])
367
368
369   and conclude_aux conclude =
370     let module Con = Content in
371     let module P = Mpresentation in
372     if conclude.Con.conclude_method = "TD_Conversion" then
373       let expected = 
374         (match conclude.Con.conclude_conclusion with 
375            None -> P.Mtext([],"NO EXPECTED!!!")
376          | Some c -> term2pres c) in
377       let subproof = 
378         (match conclude.Con.conclude_args with
379           [Con.ArgProof p] -> p
380          | _ -> assert false) in
381       let synth = 
382         (match subproof.Con.proof_conclude.Con.conclude_conclusion with
383            None -> P.Mtext([],"NO SYNTH!!!")
384          | Some c -> (term2pres c)) in
385       P.Mtable 
386         ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"],
387         [P.Mtr([],[P.Mtd([],make_concl "we must prove" expected)]);
388          P.Mtr([],[P.Mtd([],make_concl "or equivalently" synth)]);
389          P.Mtr([],[P.Mtd([],proof2pres subproof)])])
390     else if conclude.Con.conclude_method = "BU_Conversion" then
391       assert false
392     else if conclude.Con.conclude_method = "Exact" then
393       let arg = 
394         (match conclude.Con.conclude_args with 
395            [Con.Term t] -> term2pres t
396          | _ -> assert false) in
397       (match conclude.Con.conclude_conclusion with 
398          None ->
399           P.Mrow []
400            [P.Mtext [None, "mathcolor", "red"] "Consider" ; P.smallskip; arg]
401        | Some c -> let conclusion = term2pres c in
402           make_row 
403             [arg; P.Mspace([None,"width","0.1cm"]);P.Mtext([],"proves")]
404             conclusion
405        )
406     else if conclude.Con.conclude_method = "Intros+LetTac" then
407       (match conclude.Con.conclude_args with
408          [Con.ArgProof p] -> proof2pres p
409        | _ -> assert false)
410 (* OLD CODE 
411       let conclusion = 
412       (match conclude.Con.conclude_conclusion with 
413          None -> P.Mtext([],"NO Conclusion!!!")
414        | Some c -> term2pres c) in
415       (match conclude.Con.conclude_args with
416          [Con.ArgProof p] -> 
417            P.Mtable 
418             ([None,"align","baseline 1"; None,"equalrows","false";
419               None,"columnalign","left"],
420               [P.Mtr([],[P.Mtd([],proof2pres p)]);
421                P.Mtr([],[P.Mtd([],
422                 (make_concl "we proved 1" conclusion))])]);
423        | _ -> assert false)
424 *)
425     else if (conclude.Con.conclude_method = "ByInduction") then
426       byinduction conclude
427     else if (conclude.Con.conclude_method = "Exists") then
428       exists conclude
429     else if (conclude.Con.conclude_method = "AndInd") then
430       andind conclude
431     else if (conclude.Con.conclude_method = "FalseInd") then
432       falseind conclude
433     else if (conclude.Con.conclude_method = "Rewrite") then
434       let justif = 
435         (match (List.nth conclude.Con.conclude_args 6) with
436            Con.ArgProof p -> justification term2pres p
437          | _ -> assert false) in
438       let term1 = 
439         (match List.nth conclude.Con.conclude_args 2 with
440            Con.Term t -> term2pres t
441          | _ -> assert false) in 
442       let term2 = 
443         (match List.nth conclude.Con.conclude_args 5 with
444            Con.Term t -> term2pres t
445          | _ -> assert false) in
446       P.Mtable ([None,"align","baseline 1";None,"equalrows","false";
447         None,"columnalign","left"], 
448          [P.Mtr ([],[P.Mtd ([],P.Mrow([],[
449           P.Mtext([None,"mathcolor","Red"],"rewrite");
450           P.Mspace([None,"width","0.1cm"]);term1;
451           P.Mspace([None,"width","0.1cm"]);
452           P.Mtext([None,"mathcolor","Red"],"with");
453           P.Mspace([None,"width","0.1cm"]);term2]))]);
454           P.Mtr ([],[P.Mtd ([],P.indented justif)])]);
455     else if conclude.Con.conclude_method = "Apply" then
456       let pres_args = 
457         make_args_for_apply term2pres conclude.Con.conclude_args in
458       P.Mrow([],
459         P.Mtext([None,"mathcolor","Red"],"by")::
460         P.Mspace([None,"width","0.1cm"])::
461         P.Mo([],"(")::pres_args@[P.Mo([],")")])
462     else 
463       P.Mtable 
464         ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"],
465          [P.Mtr ([],[P.Mtd ([],P.Mtext([],"Apply method" ^ conclude.Con.conclude_method ^ " to"))]);
466           P.Mtr ([],
467            [P.Mtd ([], 
468              (P.indented 
469                (P.Mtable 
470                  ([None,"align","baseline 1"; None,"equalrows","false";
471                    None,"columnalign","left"],
472                   args2pres conclude.Con.conclude_args))))])]) 
473
474   and args2pres l =
475     let module P = Mpresentation in
476     List.map 
477      (function a -> P.Mtr ([], [P.Mtd ([], arg2pres a)])) l
478
479   and arg2pres =
480     let module P = Mpresentation in
481     let module Con = Content in
482     function
483         Con.Aux n -> 
484           P.Mtext ([],"aux " ^ n)
485       | Con.Premise prem -> 
486           P.Mtext ([],"premise")
487       | Con.Lemma lemma ->
488           P.Mtext ([],"lemma")
489       | Con.Term t -> 
490           term2pres t
491       | Con.ArgProof p ->
492         proof2pres p 
493       | Con.ArgMethod s -> 
494          P.Mtext ([],"method") 
495  
496    and byinduction conclude =
497      let module P = Mpresentation in
498      let module Con = Content in
499      let proof_conclusion = 
500        (match conclude.Con.conclude_conclusion with
501           None -> P.Mtext([],"No conclusion???")
502         | Some t -> term2pres t) in
503      let inductive_arg,args_for_cases = 
504        (match conclude.Con.conclude_args with
505            Con.Aux(n)::_::tl ->
506              let l1,l2 = split (int_of_string n) tl in
507              let last_pos = (List.length l2)-1 in
508              List.nth l2 last_pos,l1
509          | _ -> assert false) in
510      let induction_on =
511        let arg = 
512          (match inductive_arg with
513             Con.Aux n -> 
514               P.Mtext ([],"an aux???")
515            | Con.Premise prem ->
516               (match prem.Con.premise_binder with
517                  None -> P.Mtext ([],"the previous result")
518                | Some n -> P.Mi([],n))
519            | Con.Lemma lemma -> P.Mi([],lemma.Con.lemma_name)
520            | Con.Term t -> 
521                term2pres t
522            | Con.ArgProof p ->
523                P.Mtext ([],"a proof???")
524            | Con.ArgMethod s -> 
525                P.Mtext ([],"a method???")) in
526         (make_concl "we proceede by induction on" arg) in
527      let to_prove =
528         (make_concl "to prove" proof_conclusion) in
529      P.Mtable 
530        ([None,"align","baseline 1"; None,"equalrows","false"; 
531          None,"columnalign","left"],
532           P.Mtr ([],[P.Mtd ([],induction_on)])::
533           P.Mtr ([],[P.Mtd ([],to_prove)])::
534           (make_cases args_for_cases))
535
536     and make_cases args_for_cases =
537     let module P = Mpresentation in
538     List.map 
539       (fun p -> P.Mtr ([],[P.Mtd ([],make_case p)])) args_for_cases
540
541     and make_case =  
542       let module P = Mpresentation in
543       let module Con = Content in
544       function 
545         Con.ArgProof p ->
546           let name =
547             (match p.Con.proof_name with
548                None -> P.Mtext([],"no name for case!!")
549              | Some n -> P.Mi([],n)) in
550           let indhyps,args =
551              List.partition 
552                (function
553                    `Hypothesis h -> h.Con.dec_inductive
554                  | _ -> false) p.Con.proof_context in
555           let pattern_aux =
556              List.fold_right
557                (fun e p -> 
558                   let dec  = 
559                     (match e with 
560                        `Declaration h 
561                      | `Hypothesis h -> 
562                          let name = 
563                            (match h.Con.dec_name with
564                               None -> "NO NAME???"
565                            | Some n ->n) in
566                          [P.Mspace([None,"width","0.1cm"]);
567                           P.Mi ([],name);
568                           P.Mtext([],":");
569                           (term2pres h.Con.dec_type)]
570                      | _ -> [P.Mtext ([],"???")]) in
571                   dec@p) args [] in
572           let pattern = 
573             P.Mtr ([],[P.Mtd ([],P.Mrow([],
574                P.Mtext([],"Case")::P.Mspace([None,"width","0.1cm"])::name::pattern_aux@
575                 [P.Mspace([None,"width","0.1cm"]);
576                  P.Mtext([],"->")]))]) in
577           let subconcl = 
578             (match p.Con.proof_conclude.Con.conclude_conclusion with
579                None -> P.Mtext([],"No conclusion!!!") 
580              | Some t -> term2pres t) in
581           let asubconcl =
582              P.Mtr([],[P.Mtd([],
583               P.indented (make_concl "the thesis becomes" subconcl))]) in
584           let induction_hypothesis = 
585             (match indhyps with
586               [] -> []
587             | _ -> 
588                let text =
589                  P.Mtr([],[P.Mtd([], P.indented 
590                  (P.Mtext([],"by induction hypothesis we know:")))]) in
591                let make_hyp =
592                  function 
593                    `Hypothesis h ->
594                      let name = 
595                        (match h.Con.dec_name with
596                           None -> "no name"
597                         | Some s -> s) in
598                      P.indented (P.Mrow ([],
599                        [P.Mo([],"(");
600                         P.Mi ([],name);
601                         P.Mo([],")");
602                         P.Mspace([None,"width","0.1cm"]);
603                         term2pres h.Con.dec_type]))
604                    | _ -> assert false in
605                let hyps = 
606                  List.map 
607                    (function ce -> P.Mtr ([], [P.Mtd ([], make_hyp ce)])) 
608                     indhyps in
609                text::hyps) in          
610           (* let acontext = 
611                acontext2pres_old p.Con.proof_apply_context true in *)
612           let body = conclude2pres p.Con.proof_conclude true false in
613           let presacontext = 
614             P.Maction([None,"actiontype","toggle" ; None,"selection","1"],
615               [P.indented
616                (P.Mtext
617                  ([None,"mathcolor","Red" ;
618                    Some "helm", "xref", p.Con.proof_id],"Proof")) ;
619                acontext2pres p.Con.proof_apply_context body true]) in
620           P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
621              None,"columnalign","left"],
622              pattern::asubconcl::induction_hypothesis@
623               [P.Mtr([],[P.Mtd([],presacontext)])])
624        | _ -> assert false 
625
626      and falseind conclude =
627        let module P = Mpresentation in
628        let module Con = Content in
629        let proof_conclusion = 
630          (match conclude.Con.conclude_conclusion with
631             None -> P.Mtext([],"No conclusion???")
632           | Some t -> term2pres t) in
633        let case_arg = 
634          (match conclude.Con.conclude_args with
635              [Con.Aux(n);_;case_arg] -> case_arg
636            | _ -> assert false;
637              (* 
638              List.map (ContentPp.parg 0) conclude.Con.conclude_args;
639              assert false *)) in
640        let arg = 
641          (match case_arg with
642              Con.Aux n -> assert false
643            | Con.Premise prem ->
644               (match prem.Con.premise_binder with
645                  None -> [P.Mtext([],"Contradiction, hence")]
646                | Some n -> 
647                   [P.Mi([],n);P.smallskip;P.Mtext([],"is contradictory, hence")])
648            | Con.Lemma lemma -> 
649                [P.Mi([],lemma.Con.lemma_name);P.smallskip;P.Mtext([],"is contradictory, hence")]
650            | _ -> assert false) in
651             (* let body = proof2pres {proof with Con.proof_context = tl} in *)
652        make_row arg proof_conclusion
653
654      and andind conclude =
655        let module P = Mpresentation in
656        let module Con = Content in
657        let proof_conclusion = 
658          (match conclude.Con.conclude_conclusion with
659             None -> P.Mtext([],"No conclusion???")
660           | Some t -> term2pres t) in
661        let proof,case_arg = 
662          (match conclude.Con.conclude_args with
663              [Con.Aux(n);_;Con.ArgProof proof;case_arg] -> proof,case_arg
664            | _ -> assert false;
665              (* 
666              List.map (ContentPp.parg 0) conclude.Con.conclude_args;
667              assert false *)) in
668        let arg = 
669          (match case_arg with
670              Con.Aux n -> assert false
671            | Con.Premise prem ->
672               (match prem.Con.premise_binder with
673                  None -> []
674                | Some n -> [P.Mtext([],"by");P.smallskip;P.Mi([],n)])
675            | Con.Lemma lemma -> 
676                [P.Mtext([],"by");P.smallskip;P.Mi([],lemma.Con.lemma_name)]
677            | _ -> assert false) in
678        match proof.Con.proof_context with
679          `Hypothesis hyp1::`Hypothesis hyp2::tl ->
680             let get_name hyp =
681               (match hyp.Con.dec_name with
682                 None -> "_"
683               | Some s -> s) in
684             let preshyp1 = 
685               P.Mrow ([],
686                [P.Mtext([],"(");
687                 P.Mi([],get_name hyp1);
688                 P.Mtext([],")");
689                 P.smallskip;
690                 term2pres hyp1.Con.dec_type]) in
691             let preshyp2 = 
692               P.Mrow ([],
693                [P.Mtext([],"(");
694                 P.Mi([],get_name hyp2);
695                 P.Mtext([],")");
696                 P.smallskip;
697                 term2pres hyp2.Con.dec_type]) in
698             (* let body = proof2pres {proof with Con.proof_context = tl} in *)
699             let body = conclude2pres proof.Con.proof_conclude false true in
700             let presacontext = 
701               acontext2pres proof.Con.proof_apply_context body false in
702             P.Mtable 
703               ([None,"align","baseline 1"; None,"equalrows","false"; 
704                 None,"columnalign","left"],
705                [P.Mtr ([],[P.Mtd ([],
706                  P.Mrow([],arg@[P.smallskip;P.Mtext([],"we have")]))]);
707                 P.Mtr ([],[P.Mtd ([],preshyp1)]);
708                 P.Mtr ([],[P.Mtd ([],P.Mtext([],"and"))]);
709                 P.Mtr ([],[P.Mtd ([],preshyp2)]);
710                 P.Mtr ([],[P.Mtd ([],presacontext)])]);
711          | _ -> assert false
712
713      and exists conclude =
714        let module P = Mpresentation in
715        let module Con = Content in
716        let proof_conclusion = 
717          (match conclude.Con.conclude_conclusion with
718             None -> P.Mtext([],"No conclusion???")
719           | Some t -> term2pres t) in
720        let proof = 
721          (match conclude.Con.conclude_args with
722              [Con.Aux(n);_;Con.ArgProof proof;_] -> proof
723            | _ -> assert false;
724              (* 
725              List.map (ContentPp.parg 0) conclude.Con.conclude_args;
726              assert false *)) in
727        match proof.Con.proof_context with
728            `Declaration decl::`Hypothesis hyp::tl
729          | `Hypothesis decl::`Hypothesis hyp::tl ->
730            let get_name decl =
731              (match decl.Con.dec_name with
732                 None -> "_"
733               | Some s -> s) in
734            let presdecl = 
735              P.Mrow ([],
736                [P.Mtext([None,"mathcolor","Red"],"let");
737                 P.smallskip;
738                 P.Mi([],get_name decl);
739                 P.Mtext([],":"); term2pres decl.Con.dec_type]) in
740            let suchthat =
741              P.Mrow ([],
742                [P.Mtext([None,"mathcolor","Red"],"such that");
743                 P.smallskip;
744                 P.Mtext([],"(");
745                 P.Mi([],get_name hyp);
746                 P.Mtext([],")");
747                 P.smallskip;
748                 term2pres hyp.Con.dec_type]) in
749             (* let body = proof2pres {proof with Con.proof_context = tl} in *)
750             let body = conclude2pres proof.Con.proof_conclude false true in
751             let presacontext = 
752               acontext2pres proof.Con.proof_apply_context body false in
753             P.Mtable 
754               ([None,"align","baseline 1"; None,"equalrows","false"; 
755                 None,"columnalign","left"],
756                [P.Mtr ([],[P.Mtd ([],presdecl)]);
757                 P.Mtr ([],[P.Mtd ([],suchthat)]);
758                 P.Mtr ([],[P.Mtd ([],presacontext)])]);
759          | _ -> assert false in
760
761 proof2pres p
762 ;;
763
764 exception ToDo;;
765
766 let content2pres term2pres (id,params,metasenv,obj) =
767  let module K = Content in
768  let module P = Mpresentation in
769   match obj with
770      `Def (K.Const,thesis,`Proof p) ->
771        P.Mtable
772         [None,"align","baseline 1";
773          None,"equalrows","false";
774          None,"columnalign","left";
775          None,"helm:xref","id"]
776         ([P.Mtr []
777            [P.Mtd []
778             (P.Mrow []
779              [P.Mtext []
780                ("UNFINISHED PROOF" ^ id ^"(" ^
781                  String.concat " ; " (List.map UriManager.string_of_uri params)^
782                 ")")])] ;
783          P.Mtr []
784           [P.Mtd []
785             (P.Mrow []
786               [P.Mtext [] "THESIS:"])] ;
787          P.Mtr []
788           [P.Mtd []
789             (P.Mrow []
790               [P.Mphantom []
791                 (P.Mtext [] "__") ;
792               term2pres thesis])]] @
793          (match metasenv with
794              None -> []
795            | Some metasenv' ->
796               [P.Mtr []
797                 [P.Mtd []
798                   (* Conjectures are in their own table to make *)
799                   (* diffing the DOM trees easier.              *)
800                   (P.Mtable
801                     [None,"align","baseline 1";
802                      None,"equalrows","false";
803                      None,"columnalign","left"]
804                    ((P.Mtr []
805                       [P.Mtd []
806                        (P.Mrow []
807                          [P.Mtext [] "CONJECTURES:"])])::
808                     List.map
809                      (function
810                        (id,n,context,ty) ->
811                          P.Mtr []
812                           [P.Mtd []
813                            (P.Mrow [Some "helm", "xref", id]
814                              (List.map
815                                (function
816                                    None ->
817                                      P.Mrow []
818                                       [ P.Mi [] "_" ;
819                                         P.Mo [] ":?" ;
820                                         P.Mi [] "_"]
821                                  | Some (`Declaration d)
822                                  | Some (`Hypothesis d) ->
823                                     let
824                                      { K.dec_name = dec_name ;
825                                        K.dec_type = ty } = d
826                                      in
827                                       P.Mrow []
828                                        [ P.Mi []
829                                           (match dec_name with
830                                               None -> "_"
831                                             | Some n -> n) ;
832                                          P.Mo [] ":" ;
833                                          term2pres ty]
834                                  | Some (`Definition d) ->
835                                     let
836                                      { K.def_name = def_name ;
837                                        K.def_term = bo } = d
838                                      in
839                                       P.Mrow []
840                                        [ P.Mi []
841                                           (match def_name with
842                                               None -> "_"
843                                             | Some n -> n) ;
844                                          P.Mo [] ":=" ;
845                                          term2pres bo]
846                                  | Some (`Proof p) ->
847                                     let proof_name = p.K.proof_name in
848                                      P.Mrow []
849                                       [ P.Mi []
850                                          (match proof_name with
851                                              None -> "_"
852                                            | Some n -> n) ;
853                                         P.Mo [] ":=" ;
854                                         proof2pres term2pres p]
855                                ) (List.rev context) @
856                              [ P.Mo [] "|-" ] @
857                              [ P.Mi [] (string_of_int n) ;
858                                P.Mo [] ":" ;
859                                term2pres ty ]
860                            ))
861                           ]
862                      ) metasenv'
863                   ))]]
864          )  @
865         [P.Mtr []
866           [P.Mtd []
867             (P.Mrow []
868               [proof2pres term2pres p])]])
869    | _ -> raise ToDo
870 ;;
871
872 let content2pres ~ids_to_inner_sorts =
873  content2pres 
874   (function p -> 
875    (Cexpr2pres.cexpr2pres_charcount 
876     (Content_expressions.acic2cexpr ids_to_inner_sorts p)))
877 ;;