]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/dama/dama/models/q_support.ma
Preparing for 0.5.9 release.
[helm.git] / helm / software / matita / contribs / dama / dama / models / q_support.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "Q/q/qtimes.ma".
16 include "Q/q/qplus.ma".
17 include "logic/cprop_connectives.ma".
18
19 interpretation "Q" 'Q = Q. 
20
21 (* group over Q *)
22 axiom qp : ℚ → ℚ → ℚ.
23
24 interpretation "Q plus" 'plus x y = (qp x y).
25 interpretation "Q minus" 'minus x y = (qp x (Qopp y)).
26
27 axiom q_plus_OQ: ∀x:ℚ.x + OQ = x.
28 axiom q_plus_sym: ∀x,y:ℚ.x + y = y + x.
29 axiom q_plus_minus: ∀x.x - x = OQ.
30 axiom q_plus_assoc: ∀x,y,z.x + (y + z) = x + y + z. 
31 axiom q_opp_plus: ∀x,y,z:Q. Qopp (y + z) = Qopp y + Qopp z.
32
33 (* order over Q *)
34 axiom qlt : ℚ → ℚ → Prop.
35 axiom qle : ℚ → ℚ → Prop.
36 interpretation "Q less than" 'lt x y = (qlt x y).
37 interpretation "Q less or equal than" 'leq x y = (qle x y).
38
39 inductive q_comparison (a,b:ℚ) : CProp ≝
40  | q_leq : a ≤ b → q_comparison a b 
41  | q_gt : b < a → q_comparison a b.
42
43 axiom q_cmp:∀a,b:ℚ.q_comparison a b.
44
45 inductive q_le_elimination (a,b:ℚ) : CProp ≝
46 | q_le_from_eq : a = b → q_le_elimination a b
47 | q_le_from_lt : a < b → q_le_elimination a b.
48
49 axiom q_le_cases : ∀x,y:ℚ.x ≤ y → q_le_elimination x y.
50
51 axiom q_le_to_le_to_eq : ∀x,y. x ≤ y → y ≤ x → x = y.
52
53 axiom q_le_plus_l: ∀a,b,c:ℚ. a ≤ c - b → a + b ≤ c.
54 axiom q_le_plus_r: ∀a,b,c:ℚ. a - b ≤ c → a ≤ c + b.
55 axiom q_lt_plus_l: ∀a,b,c:ℚ. a < c - b → a + b < c.
56 axiom q_lt_plus_r: ∀a,b,c:ℚ. a - b < c → a < c + b.
57
58 axiom q_lt_opp_opp: ∀a,b.b < a → Qopp a < Qopp b.
59
60 axiom q_le_n: ∀x. x ≤ x.
61 axiom q_lt_to_le: ∀a,b:ℚ.a < b → a ≤ b.
62
63 axiom q_lt_corefl: ∀x:Q.x < x → False.
64 axiom q_lt_le_incompat: ∀x,y:Q.x < y → y ≤ x → False.
65
66 axiom q_neg_gt: ∀r:ratio.Qneg r < OQ.
67 axiom q_pos_OQ: ∀x.OQ < Qpos x.
68
69 axiom q_lt_trans: ∀x,y,z:Q. x < y → y < z → x < z.
70 axiom q_lt_le_trans: ∀x,y,z:Q. x < y → y ≤ z → x < z.
71 axiom q_le_lt_trans: ∀x,y,z:Q. x ≤ y → y < z → x < z.
72 axiom q_le_trans: ∀x,y,z:Q. x ≤ y → y ≤ z → x ≤ z.
73
74 axiom q_le_lt_OQ_plus_trans: ∀x,y:Q.OQ ≤ x → OQ < y → OQ < x + y.
75 axiom q_lt_le_OQ_plus_trans: ∀x,y:Q.OQ < x → OQ ≤ y → OQ < x + y.
76 axiom q_le_OQ_plus_trans: ∀x,y:Q.OQ ≤ x → OQ ≤ y → OQ ≤ x + y.
77
78 axiom q_leWl: ∀x,y,z.OQ ≤ x → x + y ≤ z → y ≤ z.
79 axiom q_ltWl: ∀x,y,z.OQ ≤ x → x + y < z → y < z.
80
81 (* distance *)
82 axiom q_dist : ℚ → ℚ → ℚ.
83
84 notation "hbox(\dd [term 19 x, break term 19 y])" with precedence 90
85 for @{'distance $x $y}.
86 interpretation "ℚ distance" 'distance x y = (q_dist x y).
87
88 axiom q_d_ge_OQ : ∀x,y:ℚ. OQ ≤ ⅆ[x,y].
89 axiom q_d_OQ: ∀x:Q.ⅆ[x,x] = OQ.
90 axiom q_d_noabs: ∀x,y. x ≤ y → ⅆ[y,x] = y - x.
91 axiom q_d_sym: ∀x,y. ⅆ[x,y] = ⅆ[y,x].
92
93 lemma q_2opp: ∀x:ℚ.Qopp (Qopp x) = x.
94 intros; cases x; reflexivity; qed.
95
96 (* derived *)
97 lemma q_lt_canc_plus_r:
98   ∀x,y,z:Q.x + z < y + z → x < y.
99 intros; rewrite < (q_plus_OQ y); rewrite < (q_plus_minus z);
100 rewrite > q_plus_assoc; apply q_lt_plus_r; rewrite > q_2opp; assumption;
101 qed.
102
103 lemma q_lt_inj_plus_r:
104   ∀x,y,z:Q.x < y → x + z < y + z.
105 intros; apply (q_lt_canc_plus_r ?? (Qopp z));
106 do 2 rewrite < q_plus_assoc; rewrite > q_plus_minus; 
107 do 2 rewrite > q_plus_OQ; assumption;
108 qed.
109
110 lemma q_le_inj_plus_r:
111   ∀x,y,z:Q.x ≤ y → x + z ≤ y + z.
112 intros;cases (q_le_cases ?? H);
113 [1: rewrite > H1; apply q_le_n;
114 |2: apply q_lt_to_le; apply q_lt_inj_plus_r; assumption;]
115 qed.
116
117 lemma q_le_canc_plus_r:
118   ∀x,y,z:Q.x + z ≤ y + z → x ≤ y.
119 intros; lapply (q_le_inj_plus_r ?? (Qopp z) H) as H1;
120 do 2 rewrite < q_plus_assoc in H1;
121 rewrite > q_plus_minus in H1; do 2 rewrite > q_plus_OQ in H1; assumption;
122 qed.