]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/formal_topology/overlap/o-saturations.ma
Additional contribs.
[helm.git] / helm / software / matita / contribs / formal_topology / overlap / o-saturations.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "o-algebra.ma".
16
17 alias symbol "eq" = "setoid1 eq".
18 definition is_o_saturation: ∀C:OA. unary_morphism1 C C → CProp1 ≝
19  λC:OA.λA:unary_morphism1 C C.
20   ∀U,V. (U ≤ A V) = (A U ≤ A V).
21
22 definition is_o_reduction: ∀C:OA. unary_morphism1 C C → CProp1 ≝
23  λC:OA.λJ:unary_morphism1 C C.
24     ∀U,V. (J U ≤ V) = (J U ≤ J V).
25
26 theorem o_saturation_expansive: ∀C,A. is_o_saturation C A → ∀U. U ≤ A U.
27  intros; apply (fi ?? (i ??)); apply (oa_leq_refl C).
28 qed.
29
30 theorem o_saturation_monotone:
31  ∀C,A. is_o_saturation C A →
32   ∀U,V. U ≤ V → A U ≤ A V.
33  intros; apply (if ?? (i ??)); apply (oa_leq_trans C);
34   [apply V|3: apply o_saturation_expansive ]
35  assumption.
36 qed.
37
38 theorem o_saturation_idempotent: ∀C,A. is_o_saturation C A → ∀U. 
39  eq1 C (A (A U)) (A U).
40  intros; apply (oa_leq_antisym C);
41   [ apply (if ?? (i (A U) U)); apply (oa_leq_refl C).
42   | apply o_saturation_expansive; assumption]
43 qed.