]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/formal_topology/overlap/saturations.ma
Additional contribs.
[helm.git] / helm / software / matita / contribs / formal_topology / overlap / saturations.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "relations.ma".
16
17 definition is_saturation: ∀C:REL. unary_morphism1 (Ω \sup C) (Ω \sup C) → CProp1 ≝
18  λC:REL.λA:unary_morphism1 (Ω \sup C) (Ω \sup C).
19   ∀U,V. (U ⊆ A V) = (A U ⊆ A V).
20
21 definition is_reduction: ∀C:REL. unary_morphism1 (Ω \sup C) (Ω \sup C) → CProp1 ≝
22  λC:REL.λJ:unary_morphism1 (Ω \sup C) (Ω \sup C).
23   ∀U,V. (J U ⊆ V) = (J U ⊆ J V).
24
25 theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ⊆ A U.
26  intros; apply (fi ?? (i ??)); apply subseteq_refl.
27 qed.
28
29 theorem saturation_monotone:
30  ∀C,A. is_saturation C A →
31   ∀U,V. U ⊆ V → A U ⊆ A V.
32  intros; apply (if ?? (i ??)); apply subseteq_trans; [apply V|3: apply saturation_expansive ]
33  assumption.
34 qed.
35
36 theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. A (A U) = A U.
37  intros; split;
38   [ apply (if ?? (i ??)); apply subseteq_refl
39   | apply saturation_expansive; assumption]
40 qed.