]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/procedural/CoRN/reals/CReals1.mma
Preparing for 0.5.9 release.
[helm.git] / helm / software / matita / contribs / procedural / CoRN / reals / CReals1.mma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "CoRN.ma".
18
19 (* $Id: CReals1.v,v 1.4 2004/04/23 10:01:04 lcf Exp $ *)
20
21 include "reals/Max_AbsIR.ma".
22
23 include "algebra/Expon.ma".
24
25 include "algebra/CPoly_ApZero.ma".
26
27 (* UNEXPORTED
28 Section More_Cauchy_Props
29 *)
30
31 (*#* **Miscellaneous
32 *** More properties of Cauchy sequences
33 We will now define some special Cauchy sequences and prove some 
34 more useful properties about them.
35
36 The sequence defined by $x_n=\frac2{n+1}$#x(n)=2/(n+1)#.
37 *)
38
39 inline procedural "cic:/CoRN/reals/CReals1/twice_inv_seq_Lim.con" as lemma.
40
41 inline procedural "cic:/CoRN/reals/CReals1/twice_inv_seq.con" as definition.
42
43 (*#* 
44 Next, we prove that the sequence of absolute values of a Cauchy 
45 sequence is also Cauchy.
46 *)
47
48 inline procedural "cic:/CoRN/reals/CReals1/Cauchy_Lim_abs.con" as lemma.
49
50 inline procedural "cic:/CoRN/reals/CReals1/Cauchy_abs.con" as lemma.
51
52 inline procedural "cic:/CoRN/reals/CReals1/Lim_abs.con" as lemma.
53
54 (* UNEXPORTED
55 End More_Cauchy_Props
56 *)
57
58 (* UNEXPORTED
59 Section Subsequences
60 *)
61
62 (*#* *** Subsequences
63 We will now examine (although without formalizing it) the concept 
64 of subsequence and some of its properties.
65
66 %\begin{convention}% Let [seq1,seq2:nat->IR].
67 %\end{convention}%
68
69 In order for [seq1] to be a subsequence of [seq2], there must be an
70 increasing function [f] growing to infinity such that
71 [forall (n :nat), (seq1 n) [=] (seq2 (f n))].  We assume [f] to be such a
72 function.
73
74 Finally, for some of our results it is important to assume that 
75 [seq2] is monotonous.
76 *)
77
78 (* UNEXPORTED
79 cic:/CoRN/reals/CReals1/Subsequences/seq1.var
80 *)
81
82 (* UNEXPORTED
83 cic:/CoRN/reals/CReals1/Subsequences/seq2.var
84 *)
85
86 (* UNEXPORTED
87 cic:/CoRN/reals/CReals1/Subsequences/f.var
88 *)
89
90 (* UNEXPORTED
91 cic:/CoRN/reals/CReals1/Subsequences/monF.var
92 *)
93
94 (* UNEXPORTED
95 cic:/CoRN/reals/CReals1/Subsequences/crescF.var
96 *)
97
98 (* UNEXPORTED
99 cic:/CoRN/reals/CReals1/Subsequences/subseq.var
100 *)
101
102 (* UNEXPORTED
103 cic:/CoRN/reals/CReals1/Subsequences/mon_seq2.var
104 *)
105
106 inline procedural "cic:/CoRN/reals/CReals1/unbnd_f.con" as lemma.
107
108 (* begin hide *)
109
110 inline procedural "cic:/CoRN/reals/CReals1/Subsequences/mon_F'.con" "Subsequences__" as definition.
111
112 (* end hide *)
113
114 inline procedural "cic:/CoRN/reals/CReals1/conv_subseq_imp_conv_seq.con" as lemma.
115
116 inline procedural "cic:/CoRN/reals/CReals1/Cprop2_seq_imp_Cprop2_subseq.con" as lemma.
117
118 inline procedural "cic:/CoRN/reals/CReals1/conv_seq_imp_conv_subseq.con" as lemma.
119
120 inline procedural "cic:/CoRN/reals/CReals1/Cprop2_subseq_imp_Cprop2_seq.con" as lemma.
121
122 (* UNEXPORTED
123 End Subsequences
124 *)
125
126 (* UNEXPORTED
127 Section Cauchy_Subsequences
128 *)
129
130 (* UNEXPORTED
131 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/seq1.var
132 *)
133
134 (* UNEXPORTED
135 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/seq2.var
136 *)
137
138 (* UNEXPORTED
139 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/f.var
140 *)
141
142 (* UNEXPORTED
143 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/monF.var
144 *)
145
146 (* UNEXPORTED
147 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/crescF.var
148 *)
149
150 (* UNEXPORTED
151 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/subseq.var
152 *)
153
154 (* UNEXPORTED
155 cic:/CoRN/reals/CReals1/Cauchy_Subsequences/mon_seq2.var
156 *)
157
158 inline procedural "cic:/CoRN/reals/CReals1/Lim_seq_eq_Lim_subseq.con" as lemma.
159
160 inline procedural "cic:/CoRN/reals/CReals1/Lim_subseq_eq_Lim_seq.con" as lemma.
161
162 (* UNEXPORTED
163 End Cauchy_Subsequences
164 *)
165
166 (* UNEXPORTED
167 Section Properties_of_Exponentiation
168 *)
169
170 (*#* *** More properties of Exponentiation
171
172 Finally, we prove that [x[^]n] grows to infinity if [x [>] One].
173 *)
174
175 inline procedural "cic:/CoRN/reals/CReals1/power_big'.con" as lemma.
176
177 inline procedural "cic:/CoRN/reals/CReals1/power_big.con" as lemma.
178
179 inline procedural "cic:/CoRN/reals/CReals1/qi_yields_zero.con" as lemma.
180
181 inline procedural "cic:/CoRN/reals/CReals1/qi_lim_zero.con" as lemma.
182
183 (* UNEXPORTED
184 End Properties_of_Exponentiation
185 *)
186
187 (*#* *** [IR] has characteristic zero *)
188
189 inline procedural "cic:/CoRN/reals/CReals1/char0_IR.con" as lemma.
190
191 inline procedural "cic:/CoRN/reals/CReals1/poly_apzero_IR.con" as lemma.
192
193 inline procedural "cic:/CoRN/reals/CReals1/poly_IR_extensional.con" as lemma.
194