]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/procedural/CoRN/reals/Cauchy_CReals.mma
Preparing for 0.5.9 release.
[helm.git] / helm / software / matita / contribs / procedural / CoRN / reals / Cauchy_CReals.mma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "CoRN.ma".
18
19 (* $Id: Cauchy_CReals.v,v 1.5 2004/04/23 10:01:04 lcf Exp $ *)
20
21 include "algebra/Cauchy_COF.ma".
22
23 include "reals/CReals.ma".
24
25 (* UNEXPORTED
26 Section R_CReals
27 *)
28
29 (*#* * The Real Number Structure
30
31 We will now apply our Cauchy sequence construction to an archimedean ordered field in order to obtain a model of the real numbers.
32
33 ** Injection of [Q]
34
35 We start by showing how to inject the rational numbers in the field of Cauchy sequences; this embedding preserves the algebraic operations.
36
37 %\begin{convention}% Let [F] be an ordered field.
38 %\end{convention}%
39 *)
40
41 (* UNEXPORTED
42 cic:/CoRN/reals/Cauchy_CReals/R_CReals/F.var
43 *)
44
45 (* NOTATION
46 Notation "'R_COrdField''" := (R_COrdField F).
47 *)
48
49 inline procedural "cic:/CoRN/reals/Cauchy_CReals/inject_Q.con" as definition.
50
51 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_eq.con" as lemma.
52
53 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_plus.con" as lemma.
54
55 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_min.con" as lemma.
56
57 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_lt.con" as lemma.
58
59 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_ap.con" as lemma.
60
61 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_cancel_eq.con" as lemma.
62
63 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_cancel_less.con" as lemma.
64
65 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_le.con" as lemma.
66
67 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_cancel_leEq.con" as lemma.
68
69 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_cancel_AbsSmall.con" as lemma.
70
71 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_One.con" as lemma.
72
73 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_nring'.con" as lemma.
74
75 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_nring.con" as lemma.
76
77 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_mult.con" as lemma.
78
79 (* UNEXPORTED
80 Opaque R_COrdField.
81 *)
82
83 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_div_three.con" as lemma.
84
85 (* UNEXPORTED
86 Transparent R_COrdField.
87 *)
88
89 inline procedural "cic:/CoRN/reals/Cauchy_CReals/ing_n.con" as lemma.
90
91 inline procedural "cic:/CoRN/reals/Cauchy_CReals/expand_Q_R.con" as theorem.
92
93 inline procedural "cic:/CoRN/reals/Cauchy_CReals/conv_modulus.con" as lemma.
94
95 inline procedural "cic:/CoRN/reals/Cauchy_CReals/R_CReals/T.con" "R_CReals__" as definition.
96
97 (*#* We now assume our original field is archimedean and prove that the
98 resulting one is, too.
99 *)
100
101 (* UNEXPORTED
102 cic:/CoRN/reals/Cauchy_CReals/R_CReals/F_is_archemaedian.var
103 *)
104
105 inline procedural "cic:/CoRN/reals/Cauchy_CReals/R_is_archemaedian.con" as theorem.
106
107 (* begin hide *)
108
109 inline procedural "cic:/CoRN/reals/Cauchy_CReals/R_CReals/PT.con" "R_CReals__" as definition.
110
111 (* end hide *)
112
113 inline procedural "cic:/CoRN/reals/Cauchy_CReals/modulus_property.con" as lemma.
114
115 inline procedural "cic:/CoRN/reals/Cauchy_CReals/modulus_property_2.con" as lemma.
116
117 inline procedural "cic:/CoRN/reals/Cauchy_CReals/expand_Q_R_2.con" as lemma.
118
119 inline procedural "cic:/CoRN/reals/Cauchy_CReals/CS_seq_diagonal.con" as lemma.
120
121 (*#* ** Cauchy Completeness
122 We can also define a limit operator.
123 *)
124
125 inline procedural "cic:/CoRN/reals/Cauchy_CReals/Q_dense_in_R.con" as lemma.
126
127 inline procedural "cic:/CoRN/reals/Cauchy_CReals/LimR_CauchySeq.con" as definition.
128
129 inline procedural "cic:/CoRN/reals/Cauchy_CReals/R_is_complete.con" as theorem.
130
131 inline procedural "cic:/CoRN/reals/Cauchy_CReals/R_is_CReals.con" as definition.
132
133 inline procedural "cic:/CoRN/reals/Cauchy_CReals/R_as_CReals.con" as definition.
134
135 (* UNEXPORTED
136 End R_CReals
137 *)
138