]> matita.cs.unibo.it Git - helm.git/blob - matita/contribs/LAMBDA-TYPES/LambdaDelta-1/aplus/props.ma
tagged 0.5.0-rc1
[helm.git] / matita / contribs / LAMBDA-TYPES / LambdaDelta-1 / aplus / props.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "LambdaDelta-1/aplus/defs.ma".
18
19 include "LambdaDelta-1/next_plus/props.ma".
20
21 theorem aplus_reg_r:
22  \forall (g: G).(\forall (a1: A).(\forall (a2: A).(\forall (h1: nat).(\forall 
23 (h2: nat).((eq A (aplus g a1 h1) (aplus g a2 h2)) \to (\forall (h: nat).(eq A 
24 (aplus g a1 (plus h h1)) (aplus g a2 (plus h h2)))))))))
25 \def
26  \lambda (g: G).(\lambda (a1: A).(\lambda (a2: A).(\lambda (h1: nat).(\lambda 
27 (h2: nat).(\lambda (H: (eq A (aplus g a1 h1) (aplus g a2 h2))).(\lambda (h: 
28 nat).(nat_ind (\lambda (n: nat).(eq A (aplus g a1 (plus n h1)) (aplus g a2 
29 (plus n h2)))) H (\lambda (n: nat).(\lambda (H0: (eq A (aplus g a1 (plus n 
30 h1)) (aplus g a2 (plus n h2)))).(f_equal2 G A A asucc g g (aplus g a1 (plus n 
31 h1)) (aplus g a2 (plus n h2)) (refl_equal G g) H0))) h))))))).
32
33 theorem aplus_assoc:
34  \forall (g: G).(\forall (a: A).(\forall (h1: nat).(\forall (h2: nat).(eq A 
35 (aplus g (aplus g a h1) h2) (aplus g a (plus h1 h2))))))
36 \def
37  \lambda (g: G).(\lambda (a: A).(\lambda (h1: nat).(nat_ind (\lambda (n: 
38 nat).(\forall (h2: nat).(eq A (aplus g (aplus g a n) h2) (aplus g a (plus n 
39 h2))))) (\lambda (h2: nat).(refl_equal A (aplus g a h2))) (\lambda (n: 
40 nat).(\lambda (_: ((\forall (h2: nat).(eq A (aplus g (aplus g a n) h2) (aplus 
41 g a (plus n h2)))))).(\lambda (h2: nat).(nat_ind (\lambda (n0: nat).(eq A 
42 (aplus g (asucc g (aplus g a n)) n0) (asucc g (aplus g a (plus n n0))))) 
43 (eq_ind nat n (\lambda (n0: nat).(eq A (asucc g (aplus g a n)) (asucc g 
44 (aplus g a n0)))) (refl_equal A (asucc g (aplus g a n))) (plus n O) (plus_n_O 
45 n)) (\lambda (n0: nat).(\lambda (H0: (eq A (aplus g (asucc g (aplus g a n)) 
46 n0) (asucc g (aplus g a (plus n n0))))).(eq_ind nat (S (plus n n0)) (\lambda 
47 (n1: nat).(eq A (asucc g (aplus g (asucc g (aplus g a n)) n0)) (asucc g 
48 (aplus g a n1)))) (f_equal2 G A A asucc g g (aplus g (asucc g (aplus g a n)) 
49 n0) (asucc g (aplus g a (plus n n0))) (refl_equal G g) H0) (plus n (S n0)) 
50 (plus_n_Sm n n0)))) h2)))) h1))).
51
52 theorem aplus_asucc:
53  \forall (g: G).(\forall (h: nat).(\forall (a: A).(eq A (aplus g (asucc g a) 
54 h) (asucc g (aplus g a h)))))
55 \def
56  \lambda (g: G).(\lambda (h: nat).(\lambda (a: A).(eq_ind_r A (aplus g a 
57 (plus (S O) h)) (\lambda (a0: A).(eq A a0 (asucc g (aplus g a h)))) 
58 (refl_equal A (asucc g (aplus g a h))) (aplus g (aplus g a (S O)) h) 
59 (aplus_assoc g a (S O) h)))).
60
61 theorem aplus_sort_O_S_simpl:
62  \forall (g: G).(\forall (n: nat).(\forall (k: nat).(eq A (aplus g (ASort O 
63 n) (S k)) (aplus g (ASort O (next g n)) k))))
64 \def
65  \lambda (g: G).(\lambda (n: nat).(\lambda (k: nat).(eq_ind A (aplus g (asucc 
66 g (ASort O n)) k) (\lambda (a: A).(eq A a (aplus g (ASort O (next g n)) k))) 
67 (refl_equal A (aplus g (ASort O (next g n)) k)) (asucc g (aplus g (ASort O n) 
68 k)) (aplus_asucc g k (ASort O n))))).
69
70 theorem aplus_sort_S_S_simpl:
71  \forall (g: G).(\forall (n: nat).(\forall (h: nat).(\forall (k: nat).(eq A 
72 (aplus g (ASort (S h) n) (S k)) (aplus g (ASort h n) k)))))
73 \def
74  \lambda (g: G).(\lambda (n: nat).(\lambda (h: nat).(\lambda (k: nat).(eq_ind 
75 A (aplus g (asucc g (ASort (S h) n)) k) (\lambda (a: A).(eq A a (aplus g 
76 (ASort h n) k))) (refl_equal A (aplus g (ASort h n) k)) (asucc g (aplus g 
77 (ASort (S h) n) k)) (aplus_asucc g k (ASort (S h) n)))))).
78
79 theorem aplus_asort_O_simpl:
80  \forall (g: G).(\forall (h: nat).(\forall (n: nat).(eq A (aplus g (ASort O 
81 n) h) (ASort O (next_plus g n h)))))
82 \def
83  \lambda (g: G).(\lambda (h: nat).(nat_ind (\lambda (n: nat).(\forall (n0: 
84 nat).(eq A (aplus g (ASort O n0) n) (ASort O (next_plus g n0 n))))) (\lambda 
85 (n: nat).(refl_equal A (ASort O n))) (\lambda (n: nat).(\lambda (H: ((\forall 
86 (n0: nat).(eq A (aplus g (ASort O n0) n) (ASort O (next_plus g n0 
87 n)))))).(\lambda (n0: nat).(eq_ind A (aplus g (asucc g (ASort O n0)) n) 
88 (\lambda (a: A).(eq A a (ASort O (next g (next_plus g n0 n))))) (eq_ind nat 
89 (next_plus g (next g n0) n) (\lambda (n1: nat).(eq A (aplus g (ASort O (next 
90 g n0)) n) (ASort O n1))) (H (next g n0)) (next g (next_plus g n0 n)) 
91 (next_plus_next g n0 n)) (asucc g (aplus g (ASort O n0) n)) (aplus_asucc g n 
92 (ASort O n0)))))) h)).
93
94 theorem aplus_asort_le_simpl:
95  \forall (g: G).(\forall (h: nat).(\forall (k: nat).(\forall (n: nat).((le h 
96 k) \to (eq A (aplus g (ASort k n) h) (ASort (minus k h) n))))))
97 \def
98  \lambda (g: G).(\lambda (h: nat).(nat_ind (\lambda (n: nat).(\forall (k: 
99 nat).(\forall (n0: nat).((le n k) \to (eq A (aplus g (ASort k n0) n) (ASort 
100 (minus k n) n0)))))) (\lambda (k: nat).(\lambda (n: nat).(\lambda (_: (le O 
101 k)).(eq_ind nat k (\lambda (n0: nat).(eq A (ASort k n) (ASort n0 n))) 
102 (refl_equal A (ASort k n)) (minus k O) (minus_n_O k))))) (\lambda (h0: 
103 nat).(\lambda (H: ((\forall (k: nat).(\forall (n: nat).((le h0 k) \to (eq A 
104 (aplus g (ASort k n) h0) (ASort (minus k h0) n))))))).(\lambda (k: 
105 nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).((le (S h0) n) \to (eq A 
106 (asucc g (aplus g (ASort n n0) h0)) (ASort (minus n (S h0)) n0))))) (\lambda 
107 (n: nat).(\lambda (H0: (le (S h0) O)).(ex2_ind nat (\lambda (n0: nat).(eq nat 
108 O (S n0))) (\lambda (n0: nat).(le h0 n0)) (eq A (asucc g (aplus g (ASort O n) 
109 h0)) (ASort (minus O (S h0)) n)) (\lambda (x: nat).(\lambda (H1: (eq nat O (S 
110 x))).(\lambda (_: (le h0 x)).(let H3 \def (eq_ind nat O (\lambda (ee: 
111 nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow True 
112 | (S _) \Rightarrow False])) I (S x) H1) in (False_ind (eq A (asucc g (aplus 
113 g (ASort O n) h0)) (ASort (minus O (S h0)) n)) H3))))) (le_gen_S h0 O H0)))) 
114 (\lambda (n: nat).(\lambda (_: ((\forall (n0: nat).((le (S h0) n) \to (eq A 
115 (asucc g (aplus g (ASort n n0) h0)) (ASort (minus n (S h0)) n0)))))).(\lambda 
116 (n0: nat).(\lambda (H1: (le (S h0) (S n))).(eq_ind A (aplus g (asucc g (ASort 
117 (S n) n0)) h0) (\lambda (a: A).(eq A a (ASort (minus (S n) (S h0)) n0))) (H n 
118 n0 (le_S_n h0 n H1)) (asucc g (aplus g (ASort (S n) n0) h0)) (aplus_asucc g 
119 h0 (ASort (S n) n0))))))) k)))) h)).
120
121 theorem aplus_asort_simpl:
122  \forall (g: G).(\forall (h: nat).(\forall (k: nat).(\forall (n: nat).(eq A 
123 (aplus g (ASort k n) h) (ASort (minus k h) (next_plus g n (minus h k)))))))
124 \def
125  \lambda (g: G).(\lambda (h: nat).(\lambda (k: nat).(\lambda (n: 
126 nat).(lt_le_e k h (eq A (aplus g (ASort k n) h) (ASort (minus k h) (next_plus 
127 g n (minus h k)))) (\lambda (H: (lt k h)).(eq_ind_r nat (plus k (minus h k)) 
128 (\lambda (n0: nat).(eq A (aplus g (ASort k n) n0) (ASort (minus k h) 
129 (next_plus g n (minus h k))))) (eq_ind A (aplus g (aplus g (ASort k n) k) 
130 (minus h k)) (\lambda (a: A).(eq A a (ASort (minus k h) (next_plus g n (minus 
131 h k))))) (eq_ind_r A (ASort (minus k k) n) (\lambda (a: A).(eq A (aplus g a 
132 (minus h k)) (ASort (minus k h) (next_plus g n (minus h k))))) (eq_ind nat O 
133 (\lambda (n0: nat).(eq A (aplus g (ASort n0 n) (minus h k)) (ASort (minus k 
134 h) (next_plus g n (minus h k))))) (eq_ind_r nat O (\lambda (n0: nat).(eq A 
135 (aplus g (ASort O n) (minus h k)) (ASort n0 (next_plus g n (minus h k))))) 
136 (aplus_asort_O_simpl g (minus h k) n) (minus k h) (O_minus k h (le_S_n k h 
137 (le_S (S k) h H)))) (minus k k) (minus_n_n k)) (aplus g (ASort k n) k) 
138 (aplus_asort_le_simpl g k k n (le_n k))) (aplus g (ASort k n) (plus k (minus 
139 h k))) (aplus_assoc g (ASort k n) k (minus h k))) h (le_plus_minus k h 
140 (le_S_n k h (le_S (S k) h H))))) (\lambda (H: (le h k)).(eq_ind_r A (ASort 
141 (minus k h) n) (\lambda (a: A).(eq A a (ASort (minus k h) (next_plus g n 
142 (minus h k))))) (eq_ind_r nat O (\lambda (n0: nat).(eq A (ASort (minus k h) 
143 n) (ASort (minus k h) (next_plus g n n0)))) (refl_equal A (ASort (minus k h) 
144 (next_plus g n O))) (minus h k) (O_minus h k H)) (aplus g (ASort k n) h) 
145 (aplus_asort_le_simpl g h k n H))))))).
146
147 theorem aplus_ahead_simpl:
148  \forall (g: G).(\forall (h: nat).(\forall (a1: A).(\forall (a2: A).(eq A 
149 (aplus g (AHead a1 a2) h) (AHead a1 (aplus g a2 h))))))
150 \def
151  \lambda (g: G).(\lambda (h: nat).(nat_ind (\lambda (n: nat).(\forall (a1: 
152 A).(\forall (a2: A).(eq A (aplus g (AHead a1 a2) n) (AHead a1 (aplus g a2 
153 n)))))) (\lambda (a1: A).(\lambda (a2: A).(refl_equal A (AHead a1 a2)))) 
154 (\lambda (n: nat).(\lambda (H: ((\forall (a1: A).(\forall (a2: A).(eq A 
155 (aplus g (AHead a1 a2) n) (AHead a1 (aplus g a2 n))))))).(\lambda (a1: 
156 A).(\lambda (a2: A).(eq_ind A (aplus g (asucc g (AHead a1 a2)) n) (\lambda 
157 (a: A).(eq A a (AHead a1 (asucc g (aplus g a2 n))))) (eq_ind A (aplus g 
158 (asucc g a2) n) (\lambda (a: A).(eq A (aplus g (asucc g (AHead a1 a2)) n) 
159 (AHead a1 a))) (H a1 (asucc g a2)) (asucc g (aplus g a2 n)) (aplus_asucc g n 
160 a2)) (asucc g (aplus g (AHead a1 a2) n)) (aplus_asucc g n (AHead a1 a2))))))) 
161 h)).
162
163 theorem aplus_asucc_false:
164  \forall (g: G).(\forall (a: A).(\forall (h: nat).((eq A (aplus g (asucc g a) 
165 h) a) \to (\forall (P: Prop).P))))
166 \def
167  \lambda (g: G).(\lambda (a: A).(A_ind (\lambda (a0: A).(\forall (h: 
168 nat).((eq A (aplus g (asucc g a0) h) a0) \to (\forall (P: Prop).P)))) 
169 (\lambda (n: nat).(\lambda (n0: nat).(\lambda (h: nat).(\lambda (H: (eq A 
170 (aplus g (match n with [O \Rightarrow (ASort O (next g n0)) | (S h0) 
171 \Rightarrow (ASort h0 n0)]) h) (ASort n n0))).(\lambda (P: Prop).(nat_ind 
172 (\lambda (n1: nat).((eq A (aplus g (match n1 with [O \Rightarrow (ASort O 
173 (next g n0)) | (S h0) \Rightarrow (ASort h0 n0)]) h) (ASort n1 n0)) \to P)) 
174 (\lambda (H0: (eq A (aplus g (ASort O (next g n0)) h) (ASort O n0))).(let H1 
175 \def (eq_ind A (aplus g (ASort O (next g n0)) h) (\lambda (a0: A).(eq A a0 
176 (ASort O n0))) H0 (ASort (minus O h) (next_plus g (next g n0) (minus h O))) 
177 (aplus_asort_simpl g h O (next g n0))) in (let H2 \def (f_equal A nat 
178 (\lambda (e: A).(match e in A return (\lambda (_: A).nat) with [(ASort _ n1) 
179 \Rightarrow n1 | (AHead _ _) \Rightarrow ((let rec next_plus (g0: G) (n1: 
180 nat) (i: nat) on i: nat \def (match i with [O \Rightarrow n1 | (S i0) 
181 \Rightarrow (next g0 (next_plus g0 n1 i0))]) in next_plus) g (next g n0) 
182 (minus h O))])) (ASort (minus O h) (next_plus g (next g n0) (minus h O))) 
183 (ASort O n0) H1) in (let H3 \def (eq_ind_r nat (minus h O) (\lambda (n1: 
184 nat).(eq nat (next_plus g (next g n0) n1) n0)) H2 h (minus_n_O h)) in 
185 (le_lt_false (next_plus g (next g n0) h) n0 (eq_ind nat (next_plus g (next g 
186 n0) h) (\lambda (n1: nat).(le (next_plus g (next g n0) h) n1)) (le_n 
187 (next_plus g (next g n0) h)) n0 H3) (next_plus_lt g h n0) P))))) (\lambda 
188 (n1: nat).(\lambda (_: (((eq A (aplus g (match n1 with [O \Rightarrow (ASort 
189 O (next g n0)) | (S h0) \Rightarrow (ASort h0 n0)]) h) (ASort n1 n0)) \to 
190 P))).(\lambda (H0: (eq A (aplus g (ASort n1 n0) h) (ASort (S n1) n0))).(let 
191 H1 \def (eq_ind A (aplus g (ASort n1 n0) h) (\lambda (a0: A).(eq A a0 (ASort 
192 (S n1) n0))) H0 (ASort (minus n1 h) (next_plus g n0 (minus h n1))) 
193 (aplus_asort_simpl g h n1 n0)) in (let H2 \def (f_equal A nat (\lambda (e: 
194 A).(match e in A return (\lambda (_: A).nat) with [(ASort n2 _) \Rightarrow 
195 n2 | (AHead _ _) \Rightarrow ((let rec minus (n2: nat) on n2: (nat \to nat) 
196 \def (\lambda (m: nat).(match n2 with [O \Rightarrow O | (S k) \Rightarrow 
197 (match m with [O \Rightarrow (S k) | (S l) \Rightarrow (minus k l)])])) in 
198 minus) n1 h)])) (ASort (minus n1 h) (next_plus g n0 (minus h n1))) (ASort (S 
199 n1) n0) H1) in ((let H3 \def (f_equal A nat (\lambda (e: A).(match e in A 
200 return (\lambda (_: A).nat) with [(ASort _ n2) \Rightarrow n2 | (AHead _ _) 
201 \Rightarrow ((let rec next_plus (g0: G) (n2: nat) (i: nat) on i: nat \def 
202 (match i with [O \Rightarrow n2 | (S i0) \Rightarrow (next g0 (next_plus g0 
203 n2 i0))]) in next_plus) g n0 (minus h n1))])) (ASort (minus n1 h) (next_plus 
204 g n0 (minus h n1))) (ASort (S n1) n0) H1) in (\lambda (H4: (eq nat (minus n1 
205 h) (S n1))).(le_Sx_x n1 (eq_ind nat (minus n1 h) (\lambda (n2: nat).(le n2 
206 n1)) (minus_le n1 h) (S n1) H4) P))) H2)))))) n H)))))) (\lambda (a0: 
207 A).(\lambda (_: ((\forall (h: nat).((eq A (aplus g (asucc g a0) h) a0) \to 
208 (\forall (P: Prop).P))))).(\lambda (a1: A).(\lambda (H0: ((\forall (h: 
209 nat).((eq A (aplus g (asucc g a1) h) a1) \to (\forall (P: 
210 Prop).P))))).(\lambda (h: nat).(\lambda (H1: (eq A (aplus g (AHead a0 (asucc 
211 g a1)) h) (AHead a0 a1))).(\lambda (P: Prop).(let H2 \def (eq_ind A (aplus g 
212 (AHead a0 (asucc g a1)) h) (\lambda (a2: A).(eq A a2 (AHead a0 a1))) H1 
213 (AHead a0 (aplus g (asucc g a1) h)) (aplus_ahead_simpl g h a0 (asucc g a1))) 
214 in (let H3 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda 
215 (_: A).A) with [(ASort _ _) \Rightarrow ((let rec aplus (g0: G) (a2: A) (n: 
216 nat) on n: A \def (match n with [O \Rightarrow a2 | (S n0) \Rightarrow (asucc 
217 g0 (aplus g0 a2 n0))]) in aplus) g (asucc g a1) h) | (AHead _ a2) \Rightarrow 
218 a2])) (AHead a0 (aplus g (asucc g a1) h)) (AHead a0 a1) H2) in (H0 h H3 
219 P)))))))))) a)).
220
221 theorem aplus_inj:
222  \forall (g: G).(\forall (h1: nat).(\forall (h2: nat).(\forall (a: A).((eq A 
223 (aplus g a h1) (aplus g a h2)) \to (eq nat h1 h2)))))
224 \def
225  \lambda (g: G).(\lambda (h1: nat).(nat_ind (\lambda (n: nat).(\forall (h2: 
226 nat).(\forall (a: A).((eq A (aplus g a n) (aplus g a h2)) \to (eq nat n 
227 h2))))) (\lambda (h2: nat).(nat_ind (\lambda (n: nat).(\forall (a: A).((eq A 
228 (aplus g a O) (aplus g a n)) \to (eq nat O n)))) (\lambda (a: A).(\lambda (_: 
229 (eq A a a)).(refl_equal nat O))) (\lambda (n: nat).(\lambda (_: ((\forall (a: 
230 A).((eq A a (aplus g a n)) \to (eq nat O n))))).(\lambda (a: A).(\lambda (H0: 
231 (eq A a (asucc g (aplus g a n)))).(let H1 \def (eq_ind_r A (asucc g (aplus g 
232 a n)) (\lambda (a0: A).(eq A a a0)) H0 (aplus g (asucc g a) n) (aplus_asucc g 
233 n a)) in (aplus_asucc_false g a n (sym_eq A a (aplus g (asucc g a) n) H1) (eq 
234 nat O (S n)))))))) h2)) (\lambda (n: nat).(\lambda (H: ((\forall (h2: 
235 nat).(\forall (a: A).((eq A (aplus g a n) (aplus g a h2)) \to (eq nat n 
236 h2)))))).(\lambda (h2: nat).(nat_ind (\lambda (n0: nat).(\forall (a: A).((eq 
237 A (aplus g a (S n)) (aplus g a n0)) \to (eq nat (S n) n0)))) (\lambda (a: 
238 A).(\lambda (H0: (eq A (asucc g (aplus g a n)) a)).(let H1 \def (eq_ind_r A 
239 (asucc g (aplus g a n)) (\lambda (a0: A).(eq A a0 a)) H0 (aplus g (asucc g a) 
240 n) (aplus_asucc g n a)) in (aplus_asucc_false g a n H1 (eq nat (S n) O))))) 
241 (\lambda (n0: nat).(\lambda (_: ((\forall (a: A).((eq A (asucc g (aplus g a 
242 n)) (aplus g a n0)) \to (eq nat (S n) n0))))).(\lambda (a: A).(\lambda (H1: 
243 (eq A (asucc g (aplus g a n)) (asucc g (aplus g a n0)))).(let H2 \def 
244 (eq_ind_r A (asucc g (aplus g a n)) (\lambda (a0: A).(eq A a0 (asucc g (aplus 
245 g a n0)))) H1 (aplus g (asucc g a) n) (aplus_asucc g n a)) in (let H3 \def 
246 (eq_ind_r A (asucc g (aplus g a n0)) (\lambda (a0: A).(eq A (aplus g (asucc g 
247 a) n) a0)) H2 (aplus g (asucc g a) n0) (aplus_asucc g n0 a)) in (f_equal nat 
248 nat S n n0 (H n0 (asucc g a) H3)))))))) h2)))) h1)).
249