]> matita.cs.unibo.it Git - helm.git/blob - matita/library/decidable_kit/fintype.ma
- destruct tactic: automatic simplification in case of failure removed
[helm.git] / matita / library / decidable_kit / fintype.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 set "baseuri" "cic:/matita/decidable_kit/fintype/".
16
17 include "decidable_kit/eqtype.ma".
18 include "decidable_kit/list_aux.ma".
19
20 record finType : Type ≝ {
21   fsort :> eqType;
22   enum : list fsort;
23   enum_uniq : ∀x:fsort. count fsort (cmp fsort x) enum = (S O)  
24 }.
25
26 definition segment : nat → eqType ≝ 
27   λn.sub_eqType nat_eqType (λx:nat_eqType.ltb x n).
28
29 definition is_some : ∀d:eqType. option d → bool ≝ 
30   λd:eqType.λo:option d.notb (cmp (option_eqType d) (None ?) o).
31
32 definition filter ≝
33   λA,B:Type.λp:A→option B.λl:list A.
34   foldr A ? 
35     (λx,acc. match (p x) with [None ⇒ acc | (Some y) ⇒ cons B y acc]) (nil B) l.
36
37 definition segment_enum  ≝
38   λbound.filter ? ? (if_p nat_eqType (λx.ltb x bound)) (iota O bound).
39
40 lemma iota_ltb : ∀x,p:nat. mem nat_eqType x (iota O p) = ltb x p.
41 intros (x p); elim p; simplify;[reflexivity] 
42 apply (cmpP nat_eqType x n); intros (E); rewrite > H; clear H; simplify;
43 [1: symmetry; apply (p2bT ? ? (lebP ? ?)); rewrite > E; apply le_n;
44 |2: rewrite < (leb_eqb x n); rewrite > E; reflexivity;]
45 qed.
46
47 lemma mem_filter :
48   ∀d1,d2:eqType.∀x:d2.∀l:list d1.∀p:d1 → option d2.
49   (∀y.mem d1 y l = true → 
50     match (p y) with [None ⇒ false | (Some q) ⇒ cmp d2 x q] = false) →
51   mem d2 x (filter d1 d2 p l) = false.
52 intros 5 (d1 d2 x l p); 
53 elim l; simplify; [reflexivity]
54 generalize in match (refl_eq ? (p t));
55 generalize in match (p t) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b; intros (Hpt);
56 [1: apply H; intros (y Hyl);
57     apply H1; simplify; 
58     rewrite > Hyl; rewrite > orbC; reflexivity;
59 |2: simplify; apply (cmpP d2 x s); simplify; intros (E);
60     [1: rewrite < (H1 t); simplify; [rewrite > Hpt; rewrite > E]
61         simplify; rewrite > cmp_refl; reflexivity
62     |2: apply H; intros; apply H1; simplify; rewrite > H2;
63         rewrite > orbC; reflexivity]]
64 qed.
65   
66 lemma count_O : 
67   ∀d:eqType.∀p:d→bool.∀l:list d. 
68     (∀x:d.mem d x l = true → notb (p x) = true) → count d p l = O.
69 intros 3 (d p l); elim l; simplify; [1: reflexivity]
70 generalize in match (refl_eq ? (p t));
71 generalize in match (p t) in ⊢ (? ? ? % → %); intros 1 (b);
72 cases b; simplify; 
73 [2:intros (Hpt); apply H; intros; apply H1; simplify;
74    apply (cmpP d x t); [2: rewrite > H2;]; intros; reflexivity;
75 |1:intros (H2); lapply (H1 t); [2:simplify; rewrite > cmp_refl; simplify; autobatch]
76    rewrite > H2 in Hletin; simplify in Hletin; destruct Hletin]
77 qed.    
78     
79 lemma segment_finType : nat → finType.
80 intros (bound); 
81 letin fsort ≝ (segment bound);
82 letin enum ≝ (segment_enum bound);
83 cut (∀x:fsort. count fsort (cmp fsort x) enum = (S O));
84  [ apply (mk_finType fsort enum Hcut)
85  | intros (x); cases x (n Hn); simplify in Hn; clear x;
86    generalize in match Hn; generalize in match Hn; clear Hn;
87    unfold segment_enum;
88    generalize in match bound in ⊢ (% → ? → ? ? (? ? ? (? ? ? ? %)) ?);
89    intros 1 (m); elim m  (Hm Hn p IH Hm Hn); [ simplify in Hm; destruct Hm ]
90    simplify; cases (eqP bool_eqType (ltb p bound) true); simplify;
91    [1:unfold segment in ⊢ (? ? match ? % ? ? with [_ ⇒ ?|_ ⇒ ?] ?);
92       unfold nat_eqType in ⊢ (? ? match % with [_ ⇒ ?|_ ⇒ ?] ?);
93       simplify; apply (cmpP nat_eqType n p); intros (Enp); simplify;
94       [2:rewrite > IH; [1,3: autobatch]
95          rewrite <  ltb_n_Sm in Hm; rewrite > Enp in Hm;
96          rewrite > orbC in Hm; assumption;
97       |1:clear IH; rewrite > (count_O fsort); [reflexivity]
98          intros 1 (x); rewrite < Enp; cases x (y Hy); 
99          intros (ABS); clear x; unfold segment; unfold notb; simplify;
100          apply (cmpP ? n y); intros (Eny); simplify; [2:reflexivity]
101          rewrite < ABS; symmetry; clear ABS;
102          generalize in match Hy; clear Hy;rewrite < Eny;
103          simplify; intros (Hn); apply (mem_filter nat_eqType fsort); intros (w Hw);
104          fold simplify (sort nat_eqType); (* CANONICAL?! *)
105          cases (in_sub_eq nat_eqType (λx:nat_eqType.ltb x bound) w);
106          simplify; [2: reflexivity]
107          generalize in match H1; clear H1; cases s; clear s; intros (H1);
108          unfold segment; simplify; simplify in H1; rewrite > H1;
109          rewrite > iota_ltb in Hw; apply (p2bF ? ? (eqP nat_eqType ? ?));
110          unfold Not; intros (Enw); rewrite > Enw in Hw; 
111          rewrite > ltb_refl in Hw; destruct Hw]
112    |2:rewrite > IH; [1:reflexivity|3:assumption]
113       rewrite <  ltb_n_Sm in Hm;
114       cases (b2pT ? ?(orbP ? ?) Hm);[1: assumption]
115       rewrite > (b2pT ? ? (eqbP ? ?) H1) in Hn;
116       rewrite > Hn in H; cases (H ?); reflexivity]]
117 qed.
118
119 let rec uniq (d:eqType) (l:list d) on l : bool ≝
120   match l with 
121   [ nil ⇒ true 
122   | (cons x tl) ⇒ andb (notb (mem d x tl)) (uniq d tl)].
123
124 lemma uniq_mem : ∀d:eqType.∀x:d.∀l:list d.uniq d (x::l) = true → mem d x l = false.
125 intros (d x l H); simplify in H; lapply (b2pT ? ? (andbP ? ?) H) as H1; clear H;
126 cases H1 (H2 H3); lapply (b2pT ? ?(negbP ?) H2); assumption;
127 qed.
128
129 lemma andbA : ∀a,b,c.andb a (andb b c) = andb (andb a b) c.
130 intros; cases a; cases b; cases c; reflexivity; qed.
131
132 lemma andbC : ∀a,b. andb a b = andb b a.
133 intros; cases a; cases b; reflexivity; qed.
134
135 lemma uniq_tail : 
136   ∀d:eqType.∀x:d.∀l:list d. uniq d (x::l) = andb (negb (mem d x l)) (uniq d l).
137 intros (d x l); elim l; simplify; [reflexivity]
138 apply (cmpP d x t); intros (E); simplify ; rewrite > E; [reflexivity]
139 rewrite > andbA; rewrite > andbC in ⊢ (? ? (? % ?) ?); rewrite < andbA;
140 rewrite < H; rewrite > andbC in ⊢ (? ? ? (? % ?)); rewrite < andbA; reflexivity;
141 qed.
142   
143 lemma count_O_mem : ∀d:eqType.∀x:d.∀l:list d.ltb O (count d (cmp d x) l) = mem d x l.
144 intros 3 (d x l); elim l [reflexivity] simplify; rewrite < H; cases (cmp d x t);
145 reflexivity; qed.
146   
147 lemma uniqP : ∀d:eqType.∀l:list d. 
148   reflect (∀x:d.mem d x l = true → count d (cmp d x) l = (S O)) (uniq d l).
149 intros (d l); apply prove_reflect; elim l; [1: simplify in H1; destruct H1 | 3: simplify in H; destruct H]
150 [1: generalize in match H2; simplify in H2; 
151     lapply (b2pT ? ? (orbP ? ?) H2) as H3; clear H2; 
152     cases H3; clear H3; intros;
153     [2: lapply (uniq_mem ? ? ? H1) as H4; simplify; apply (cmpP d x t);  
154         intros (H5); simplify;
155         [1: rewrite > count_O; [reflexivity]
156             intros (y Hy); rewrite > H5 in H2 H3 H4 ⊢ %; clear H5; clear x; 
157             rewrite > H2 in H4; destruct H4;
158          |2: simplify; rewrite > H5; simplify; apply H; 
159              rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); 
160              assumption;]
161     |1: simplify; rewrite > H2; simplify; rewrite > count_O; [reflexivity]
162         intros (y Hy); rewrite > (b2pT ? ? (eqP d ? ?) H2) in H3 ⊢ %;
163         clear H2; clear x; lapply (uniq_mem ? ? ? H1) as H4;
164         apply (cmpP d t y); intros (E); [2: reflexivity].
165         rewrite > E in H4; rewrite > H4 in Hy; destruct Hy;]
166 |2: rewrite > uniq_tail in H1; 
167     generalize in match (refl_eq ? (uniq d l1));
168     generalize in match (uniq d l1) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
169     [1: intros (E); rewrite > E in H1; rewrite > andbC in H1; simplify in H1;
170         unfold Not; intros (A); lapply (A t) as A'; 
171         [1: simplify in A'; rewrite > cmp_refl in A'; simplify in A';
172             destruct A'; rewrite < count_O_mem in H1;
173             rewrite > Hcut in H1; simplify in H1; destruct H1;  
174         |2: simplify; rewrite > cmp_refl; reflexivity;]
175     |2: intros (Ul1); lapply (H Ul1); unfold Not; intros (A); apply Hletin;
176         intros (r Mrl1); lapply (A r); 
177           [2: simplify; rewrite > Mrl1; cases (cmp d r t); reflexivity]
178         generalize in match Hletin1; simplify; apply (cmpP d r t); 
179         simplify; intros (E Hc); [2: assumption]
180         destruct Hc; rewrite < count_O_mem in Mrl1;
181         rewrite > Hcut in Mrl1; simplify in Mrl1; destruct Mrl1;]]
182 qed.
183     
184 lemma mem_finType : ∀d:finType.∀x:d. mem d x (enum d) = true. 
185 intros 1 (d); cases d; simplify; intros; rewrite < count_O_mem;
186 rewrite > H; reflexivity;
187 qed.
188
189 lemma uniq_fintype_enum :  ∀d:finType. uniq d (enum d) = true.
190 intros; cases d; simplify; apply (p2bT ? ? (uniqP ? ?)); intros; apply H;
191 qed.
192
193 lemma sub_enumP : ∀d:finType.∀p:d→bool.∀x:sub_eqType d p. 
194   count (sub_eqType d p) (cmp ? x) (filter ? ? (if_p ? p) (enum d)) = (S O).
195 intros (d p x); cases x (t Ht); clear x;
196 generalize in match (mem_finType d t); 
197 generalize in match (uniq_fintype_enum d); 
198 elim (enum d); [simplify in H1; destruct H1] simplify;  
199 cases (in_sub_eq d p t1); simplify; 
200 [1:generalize in match H3; clear H3; cases s (r Hr); clear s;
201    simplify; intros (Ert1); generalize in match Hr; clear Hr;
202    rewrite > Ert1; clear Ert1; clear r; intros (Ht1);
203    unfold  sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [_ ⇒ ?|_ ⇒ ?] ?); 
204    simplify; apply (cmpP ? t t1); simplify; intros (Ett1);
205    [1: cut (count (sub_eqType d p) (cmp (sub_eqType d p) {t,Ht})
206             (filter d (sigma d p) (if_p d p) l) = O); [1:rewrite > Hcut; reflexivity]
207        lapply (uniq_mem ? ? ? H1);
208        generalize in match Ht; 
209        rewrite > Ett1; intros (Ht1'); clear Ht1;
210        generalize in match Hletin; elim l; [ reflexivity]
211        simplify; cases (in_sub_eq d p t2); simplify; 
212        [1: generalize in match H5; cases s; simplify; intros; clear H5; 
213            unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [_ ⇒ ?|_ ⇒ ?] ?);
214            simplify; rewrite > H7; simplify in H4;
215            generalize in match H4; clear H4; apply (cmpP ? t1 t2);
216            simplify; intros; [destruct H5] apply H3; assumption;
217        |2: apply H3;
218            generalize in match H4; clear H4; simplify; apply (cmpP ? t1 t2);
219            simplify; intros; [destruct H6] assumption;]
220    |2: apply H; [ rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption]
221        simplify in H2; rewrite > Ett1 in H2; simplify in H2; assumption] 
222 |2:rewrite > H; [1:reflexivity|2: rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption]
223    simplify in H2; generalize in match H2; apply (cmpP ? t t1); 
224    intros (E) [2:assumption] clear H; rewrite > E in Ht; rewrite > H3 in Ht;
225    destruct Ht;]
226 qed.
227  
228 definition sub_finType : ∀d:finType.∀p:d→bool.finType ≝
229   λd:finType.λp:d→bool. mk_finType (sub_eqType d p) (filter ? ? (if_p ? p) (enum d)) (sub_enumP d p).
230