]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/computation/fpbg.ma
- "big tree" theorem is now proved up to some conjectures involving
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / computation / fpbg.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/lazybtpredstarproper_8.ma".
16 include "basic_2/computation/fpbc.ma".
17
18 (* GENEARAL "BIG TREE" PROPER PARALLEL COMPUTATION FOR CLOSURES *************)
19
20 definition fpbg: ∀h. sd h → tri_relation genv lenv term ≝
21                  λh,g. tri_TC … (fpbc h g).
22
23 interpretation "general 'big tree' proper parallel computation (closure)"
24    'LazyBTPRedStarProper h g G1 L1 T1 G2 L2 T2 = (fpbg h g G1 L1 T1 G2 L2 T2).
25
26 (* Basic properties *********************************************************)
27
28 lemma fpbc_fpbg: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ≻⋕[h, g] ⦃G2, L2, T2⦄ →
29                  ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G2, L2, T2⦄.
30 /2 width=1 by tri_inj/ qed.
31
32 lemma fpbg_strap1: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2.
33                    ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G, L, T⦄ → ⦃G, L, T⦄ ≻⋕[h, g] ⦃G2, L2, T2⦄ →
34                    ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G2, L2, T2⦄.
35 /2 width=5 by tri_step/ qed.
36
37 lemma fpbg_strap2: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2.
38                    ⦃G1, L1, T1⦄ ≻⋕[h, g] ⦃G, L, T⦄ → ⦃G, L, T⦄ >⋕[h, g] ⦃G2, L2, T2⦄ →
39                    ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G2, L2, T2⦄.
40 /2 width=5 by tri_TC_strap/ qed.
41
42 (* Note: this is used in the closure proof *)
43 lemma fqup_fpbg: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃+ ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G2, L2, T2⦄.
44 /4 width=1 by fpbc_fpbg, fpbu_fpbc, fpbu_fqup/ qed.
45
46 (* Basic eliminators ********************************************************)
47
48 lemma fpbg_ind: ∀h,g,G1,L1,T1. ∀R:relation3 ….
49                 (∀G2,L2,T2. ⦃G1, L1, T1⦄ ≻⋕[h, g] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
50                 (∀G,G2,L,L2,T,T2. ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G, L, T⦄ → ⦃G, L, T⦄ ≻⋕[h, g] ⦃G2, L2, T2⦄ → R G L T → R G2 L2 T2) →
51                 ∀G2,L2,T2. ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G2, L2, T2⦄ → R G2 L2 T2.
52 #h #g #G1 #L1 #T1 #R #IH1 #IH2 #G2 #L2 #T2 #H
53 @(tri_TC_ind … IH1 IH2 G2 L2 T2 H)
54 qed-.
55
56 lemma fpbg_ind_dx: ∀h,g,G2,L2,T2. ∀R:relation3 ….
57                    (∀G1,L1,T1. ⦃G1, L1, T1⦄ ≻⋕[h, g] ⦃G2, L2, T2⦄ → R G1 L1 T1) →
58                    (∀G1,G,L1,L,T1,T. ⦃G1, L1, T1⦄ ≻⋕[h, g] ⦃G, L, T⦄ → ⦃G, L, T⦄ >⋕[h, g] ⦃G2, L2, T2⦄ → R G L T → R G1 L1 T1) →
59                    ∀G1,L1,T1. ⦃G1, L1, T1⦄ >⋕[h, g] ⦃G2, L2, T2⦄ → R G1 L1 T1.
60 #h #g #G2 #L2 #T2 #R #IH1 #IH2 #G1 #L1 #T1 #H
61 @(tri_TC_ind_dx … IH1 IH2 G1 L1 T1 H)
62 qed-.