]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/lleq/lleq_drop.etc
advances on lfsx ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / lleq / lleq_drop.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/multiple/llpx_sn_drop.ma".
16 include "basic_2/multiple/lleq.ma".
17
18 (* LAZY EQUIVALENCE FOR LOCAL ENVIRONMENTS **********************************)
19
20 (* Advanced properties ******************************************************)
21
22 lemma lleq_bind_repl_O: ∀I,L1,L2,V,T. L1.ⓑ{I}V ≡[T, 0] L2.ⓑ{I}V →
23                         ∀J,W. L1 ≡[W, 0] L2 → L1.ⓑ{J}W ≡[T, 0] L2.ⓑ{J}W.
24 /2 width=7 by llpx_sn_bind_repl_O/ qed-.
25
26 lemma lleq_llpx_sn_trans: ∀R. lleq_transitive R →
27                           ∀L1,L2,T,l. L1 ≡[T, l] L2 →
28                           ∀L. llpx_sn R l T L2 L → llpx_sn R l T L1 L.
29 #R #HR #L1 #L2 #T #l #H @(lleq_ind … H) -L1 -L2 -T -l
30 [1,2,5: /4 width=6 by llpx_sn_fwd_length, llpx_sn_gref, llpx_sn_skip, llpx_sn_sort, trans_eq/
31 |4: /4 width=6 by llpx_sn_fwd_length, llpx_sn_free, le_repl_sn_conf_aux, trans_eq/
32 | #I #L1 #L2 #K1 #K2 #V #l #i #Hli #HLK1 #HLK2 #HK12 #IHK12 #L #H elim (llpx_sn_inv_lref_ge_sn … H … HLK2) -H -HLK2
33   /3 width=11 by llpx_sn_lref/
34 | #a #I #L1 #L2 #V #T #l #_ #_ #IHV #IHT #L #H elim (llpx_sn_inv_bind … H) -H
35   /3 width=1 by llpx_sn_bind/
36 | #I #L1 #L2 #V #T #l #_ #_ #IHV #IHT #L #H elim (llpx_sn_inv_flat … H) -H
37   /3 width=1 by llpx_sn_flat/
38 ]
39 qed-.
40
41 lemma lleq_llpx_sn_conf: ∀R. lleq_transitive R →
42                          ∀L1,L2,T,l. L1 ≡[T, l] L2 →
43                          ∀L. llpx_sn R l T L1 L → llpx_sn R l T L2 L.
44 /3 width=3 by lleq_llpx_sn_trans, lleq_sym/ qed-.
45
46 (* Advanced inversion lemmas ************************************************)
47
48 lemma lleq_inv_lref_ge_dx: ∀L1,L2,l,i. L1 ≡[#i, l] L2 → l ≤ i →
49                            ∀I,K2,V. ⬇[i] L2 ≡ K2.ⓑ{I}V →
50                            ∃∃K1. ⬇[i] L1 ≡ K1.ⓑ{I}V & K1 ≡[V, 0] K2.
51 #L1 #L2 #l #i #H #Hli #I #K2 #V #HLK2 elim (llpx_sn_inv_lref_ge_dx … H … HLK2) -L2
52 /2 width=3 by ex2_intro/
53 qed-.
54
55 lemma lleq_inv_lref_ge_sn: ∀L1,L2,l,i. L1 ≡[#i, l] L2 → l ≤ i →
56                            ∀I,K1,V. ⬇[i] L1 ≡ K1.ⓑ{I}V →
57                            ∃∃K2. ⬇[i] L2 ≡ K2.ⓑ{I}V & K1 ≡[V, 0] K2.
58 #L1 #L2 #l #i #H #Hli #I1 #K1 #V #HLK1 elim (llpx_sn_inv_lref_ge_sn … H … HLK1) -L1
59 /2 width=3 by ex2_intro/
60 qed-.
61
62 lemma lleq_inv_lref_ge_bi: ∀L1,L2,l,i. L1 ≡[#i, l] L2 → l ≤ i →
63                            ∀I1,I2,K1,K2,V1,V2.
64                            ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
65                            ∧∧ I1 = I2 & K1 ≡[V1, 0] K2 & V1 = V2.
66 /2 width=8 by llpx_sn_inv_lref_ge_bi/ qed-.
67
68 lemma lleq_inv_lref_ge: ∀L1,L2,l,i. L1 ≡[#i, l] L2 → l ≤ i →
69                         ∀I,K1,K2,V. ⬇[i] L1 ≡ K1.ⓑ{I}V → ⬇[i] L2 ≡ K2.ⓑ{I}V →
70                         K1 ≡[V, 0] K2.
71 #L1 #L2 #l #i #HL12 #Hli #I #K1 #K2 #V #HLK1 #HLK2
72 elim (lleq_inv_lref_ge_bi … HL12 … HLK1 HLK2) //
73 qed-.
74
75 lemma lleq_inv_S: ∀L1,L2,T,l. L1 ≡[T, l+1] L2 →
76                   ∀I,K1,K2,V. ⬇[l] L1 ≡ K1.ⓑ{I}V → ⬇[l] L2 ≡ K2.ⓑ{I}V →
77                   K1 ≡[V, 0] K2 → L1 ≡[T, l] L2.
78 /2 width=9 by llpx_sn_inv_S/ qed-.
79
80 lemma lleq_inv_bind_O: ∀a,I,L1,L2,V,T. L1 ≡[ⓑ{a,I}V.T, 0] L2 →
81                        L1 ≡[V, 0] L2 ∧ L1.ⓑ{I}V ≡[T, 0] L2.ⓑ{I}V.
82 /2 width=2 by llpx_sn_inv_bind_O/ qed-.
83
84 (* Advanced forward lemmas **************************************************)
85
86 lemma lleq_fwd_lref_dx: ∀L1,L2,l,i. L1 ≡[#i, l] L2 →
87                         ∀I,K2,V. ⬇[i] L2 ≡ K2.ⓑ{I}V →
88                         i < l ∨
89                         ∃∃K1. ⬇[i] L1 ≡ K1.ⓑ{I}V & K1 ≡[V, 0] K2 & l ≤ i.
90 #L1 #L2 #l #i #H #I #K2 #V #HLK2 elim (llpx_sn_fwd_lref_dx … H … HLK2) -L2
91 [ | * ] /3 width=3 by ex3_intro, or_intror, or_introl/
92 qed-.
93
94 lemma lleq_fwd_lref_sn: ∀L1,L2,l,i. L1 ≡[#i, l] L2 →
95                         ∀I,K1,V. ⬇[i] L1 ≡ K1.ⓑ{I}V →
96                         i < l ∨
97                         ∃∃K2. ⬇[i] L2 ≡ K2.ⓑ{I}V & K1 ≡[V, 0] K2 & l ≤ i.
98 #L1 #L2 #l #i #H #I #K1 #V #HLK1 elim (llpx_sn_fwd_lref_sn … H … HLK1) -L1
99 [ | * ] /3 width=3 by ex3_intro, or_intror, or_introl/
100 qed-.
101
102 lemma lleq_fwd_bind_O_dx: ∀a,I,L1,L2,V,T. L1 ≡[ⓑ{a,I}V.T, 0] L2 →
103                           L1.ⓑ{I}V ≡[T, 0] L2.ⓑ{I}V.
104 /2 width=2 by llpx_sn_fwd_bind_O_dx/ qed-.
105
106 (* Inversion lemmas on negated lazy quivalence for local environments *******)
107
108 lemma nlleq_inv_bind: ∀a,I,L1,L2,V,T,l. (L1 ≡[ⓑ{a,I}V.T, l] L2 → ⊥) →
109                       (L1 ≡[V, l] L2 → ⊥) ∨ (L1.ⓑ{I}V ≡[T, ⫯l] L2.ⓑ{I}V → ⊥).
110 /3 width=2 by nllpx_sn_inv_bind, eq_term_dec/ qed-.
111
112 lemma nlleq_inv_flat: ∀I,L1,L2,V,T,l. (L1 ≡[ⓕ{I}V.T, l] L2 → ⊥) →
113                       (L1 ≡[V, l] L2 → ⊥) ∨ (L1 ≡[T, l] L2 → ⊥).
114 /3 width=2 by nllpx_sn_inv_flat, eq_term_dec/ qed-.
115
116 lemma nlleq_inv_bind_O: ∀a,I,L1,L2,V,T. (L1 ≡[ⓑ{a,I}V.T, 0] L2 → ⊥) →
117                         (L1 ≡[V, 0] L2 → ⊥) ∨ (L1.ⓑ{I}V ≡[T, 0] L2.ⓑ{I}V → ⊥).
118 /3 width=2 by nllpx_sn_inv_bind_O, eq_term_dec/ qed-.