]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/i_static/lfxss.ma
update in basic_2 and apps_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / i_static / lfxss.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/relationstarstar_4.ma".
16 include "basic_2/static/lfxs.ma".
17
18 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
19
20 definition lfxss (R) (T): relation lenv ≝ TC … (lfxs R T).
21
22 interpretation "tc of generic extension on referred entries (local environment)"
23    'RelationStarStar R T L1 L2 = (lfxss R T L1 L2).
24
25 (* Basic properties ***********************************************************)
26
27 lemma lfxss_atom: ∀R,I. ⋆ ⦻**[R, ⓪{I}] ⋆.
28 /2 width=1 by inj/ qed.
29
30 lemma lfxss_sort: ∀R,I,L1,L2,V1,V2,s.
31                   L1 ⦻**[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻**[R, ⋆s] L2.ⓑ{I}V2.
32 #R #I #L1 #L2 #V1 #V2 #s #H elim H -L2
33 /3 width=4 by lfxs_sort, step, inj/
34 qed.
35
36 lemma lfxss_lref: ∀R,I,L1,L2,V1,V2,i.
37                   L1 ⦻**[R, #i] L2 → L1.ⓑ{I}V1 ⦻**[R, #⫯i] L2.ⓑ{I}V2.
38 #R #I #L1 #L2 #V1 #V2 #i #H elim H -L2
39 /3 width=4 by lfxs_lref, step, inj/
40 qed.
41
42 lemma lfxss_gref: ∀R,I,L1,L2,V1,V2,l.
43                   L1 ⦻**[R, §l] L2 → L1.ⓑ{I}V1 ⦻**[R, §l] L2.ⓑ{I}V2.
44 #R #I #L1 #L2 #V1 #V2 #l #H elim H -L2
45 /3 width=4 by lfxs_gref, step, inj/
46 qed.
47
48 lemma lfxss_sym: ∀R. lexs_frees_confluent R cfull →
49                  (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
50                  ∀T. symmetric … (lfxss R T).
51 #R #H1R #H2R #T #L1 #L2 #H elim H -L2
52 /4 width=3 by lfxs_sym, TC_strap, inj/
53 qed-.
54
55 lemma lfxss_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
56                 ∀L1,L2,T. L1 ⦻**[R1, T] L2 → L1 ⦻**[R2, T] L2.
57 #R1 #R2 #HR #L1 #L2 #T #H elim H -L2
58 /4 width=5 by lfxs_co, step, inj/
59 qed-.
60 (*
61 (* Basic inversion lemmas ***************************************************)
62
63 lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆.
64 #R #I #Y2 * /2 width=4 by lexs_inv_atom1/
65 qed-.
66
67 lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆.
68 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
69 qed-.
70
71 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 →
72                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
73                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 &
74                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
75 #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
76 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
77 | lapply (frees_inv_sort … H1) -H1 #Hf
78   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
79   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
80   /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
81 ]
82 qed-.
83
84 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
85                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
86                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
87                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
88 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
89 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
90 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
91   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
92 ]
93 qed-.
94
95 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
96                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
97                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
98                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
99 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
100 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
101 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
102   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
103 ]
104 qed-.
105
106 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
107                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
108                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
109                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
110 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
111 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
112 | lapply (frees_inv_gref … H1) -H1 #Hf
113   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
114   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
115   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
116 ]
117 qed-.
118
119 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
120                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
121 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
122 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
123 qed-.
124
125 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
126                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
127 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
128 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
129 qed-.
130
131 (* Advanced inversion lemmas ************************************************)
132
133 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
134                              ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
135 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
136 [ #H destruct
137 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
138 ]
139 qed-.
140
141 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
142                              ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
143 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
144 [ #_ #H destruct
145 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
146 ]
147 qed-.
148
149 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
150                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
151                                       Y2 = L2.ⓑ{I}V2.
152 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
153 [ #H destruct
154 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
155   /2 width=5 by ex3_2_intro/
156 ]
157 qed-.
158
159 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
160                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
161                                       Y1 = L1.ⓑ{I}V1.
162 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
163 [ #_ #H destruct
164 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
165   /2 width=5 by ex3_2_intro/
166 ]
167 qed-.
168
169 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
170                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
171 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
172 [ #H destruct
173 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
174 ]
175 qed-.
176
177 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
178                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
179 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
180 [ #_ #H destruct
181 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
182 ]
183 qed-.
184
185 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
186                              ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
187 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
188 [ #H destruct
189 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
190 ]
191 qed-.
192
193 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
194                              ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
195 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
196 [ #_ #H destruct
197 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
198 ]
199 qed-.
200
201 (* Basic forward lemmas *****************************************************)
202
203 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
204 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
205 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
206 qed-.
207
208 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
209                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
210 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
211 qed-.
212
213 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
214 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
215 qed-.
216
217 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
218 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
219 qed-.
220
221 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
222 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
223 qed-.
224
225 (* Basic_2A1: removed theorems 24:
226               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
227               llpx_sn_bind llpx_sn_flat
228               llpx_sn_inv_bind llpx_sn_inv_flat
229               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
230               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
231               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
232               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
233 *)
234 *)