]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/i_static/tc_lfxs.ma
cpxs_lfpx completed
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / i_static / tc_lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/relationstarstar_4.ma".
16 include "basic_2/static/lfxs.ma".
17
18 (* ITERATED EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ***)
19
20 definition tc_lfxs (R) (T): relation lenv ≝ TC … (lfxs R T).
21
22 interpretation "iterated extension on referred entries (local environment)"
23    'RelationStarStar R T L1 L2 = (tc_lfxs R T L1 L2).
24
25 (* Basic properties *********************************************************)
26
27 lemma tc_lfxs_atom: ∀R,I. ⋆ ⦻**[R, ⓪{I}] ⋆.
28 /2 width=1 by inj/ qed.
29
30 lemma tc_lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
31                     L1 ⦻**[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻**[R, ⋆s] L2.ⓑ{I}V2.
32 #R #I #L1 #L2 #V1 #V2 #s #H elim H -L2
33 /3 width=4 by lfxs_sort, step, inj/
34 qed.
35
36 lemma tc_lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
37                     L1 ⦻**[R, #i] L2 → L1.ⓑ{I}V1 ⦻**[R, #⫯i] L2.ⓑ{I}V2.
38 #R #I #L1 #L2 #V1 #V2 #i #H elim H -L2
39 /3 width=4 by lfxs_lref, step, inj/
40 qed.
41
42 lemma tc_lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
43                     L1 ⦻**[R, §l] L2 → L1.ⓑ{I}V1 ⦻**[R, §l] L2.ⓑ{I}V2.
44 #R #I #L1 #L2 #V1 #V2 #l #H elim H -L2
45 /3 width=4 by lfxs_gref, step, inj/
46 qed.
47
48 lemma tc_lfxs_sym: ∀R. lexs_frees_confluent R cfull →
49                    (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
50                    ∀T. symmetric … (tc_lfxs R T).
51 #R #H1R #H2R #T #L1 #L2 #H elim H -L2
52 /4 width=3 by lfxs_sym, TC_strap, inj/
53 qed-.
54
55 lemma tc_lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
56                   ∀L1,L2,T. L1 ⦻**[R1, T] L2 → L1 ⦻**[R2, T] L2.
57 #R1 #R2 #HR #L1 #L2 #T #H elim H -L2
58 /4 width=5 by lfxs_co, step, inj/
59 qed-.
60
61 (* Basic inversion lemmas ***************************************************)
62
63 lemma tc_lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻**[R, ⓪{I}] Y2 → Y2 = ⋆.
64 #R #I #Y2 #H elim H -Y2 /3 width=3 by inj, lfxs_inv_atom_sn/
65 qed-.
66
67 lemma tc_lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻**[R, ⓪{I}] ⋆ → Y1 = ⋆.
68 #R #I #Y1 #H @(TC_ind_dx ??????? H) -Y1
69 /3 width=3 by inj, lfxs_inv_atom_dx/
70 qed-.
71
72 lemma tc_lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻**[R, ⋆s] Y2 →
73                         (Y1 = ⋆ ∧ Y2 = ⋆) ∨
74                         ∃∃I,L1,L2,V1,V2. L1 ⦻**[R, ⋆s] L2 &
75                                          Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
76 #R #Y1 #Y2 #s #H elim H -Y2
77 [ #Y2 #H elim (lfxs_inv_sort … H) -H *
78   /4 width=8 by ex3_5_intro, inj, or_introl, or_intror, conj/
79 | #Y #Y2 #_ #H elim (lfxs_inv_sort … H) -H *
80   [ #H #H2 * * /3 width=8 by ex3_5_intro, or_introl, or_intror, conj/
81   | #I #L #L2 #V #V2 #HL2 #H #H2 * *
82     [ #H1 #H0 destruct
83     | #I0 #L1 #L0 #V1 #V0 #HL10 #H1 #H0 destruct
84       /4 width=8 by ex3_5_intro, step, or_intror/
85     ]
86   ]
87
88 qed-.
89 (*
90 lemma tc_lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻**[R, #0] Y2 →
91                         (Y1 = ⋆ ∧ Y2 = ⋆) ∨
92                         ∃∃I,L1,L2,V1,V2. L1 ⦻**[R, V1] L2 & R L1 V1 V2 &
93                                          Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
94 #R #Y1 #Y2 #H elim H -Y2
95 [ #Y2 #H elim (lfxs_inv_zero … H) -H *
96   /4 width=9 by ex4_5_intro, inj, or_introl, or_intror, conj/
97 | #Y #Y2 #_ #H elim (lfxs_inv_zero … H) -H *
98   [ #H #H2 * * /3 width=9 by ex4_5_intro, or_introl, or_intror, conj/
99   | #I #L #L2 #V #V2 #HL2 #HV2 #H #H2 * *
100     [ #H1 #H0 destruct
101     | #I0 #L1 #L0 #V1 #V0 #HL10 #HV10 #H1 #H0 destruct
102       @or_intror @ex4_5_intro [6,7: |*: /width=7/ ]
103       
104       /4 width=8 by ex3_5_intro, step, or_intror/
105     ]
106   ]
107
108 qed-.
109
110
111
112
113
114 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
115 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
116 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
117   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
118 ]
119 qed-.
120
121 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
122                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
123                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
124                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
125 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
126 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
127 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
128   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
129 ]
130 qed-.
131
132 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
133                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
134                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
135                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
136 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
137 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
138 | lapply (frees_inv_gref … H1) -H1 #Hf
139   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
140   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
141   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
142 ]
143 qed-.
144
145 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
146                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
147 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
148 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
149 qed-.
150
151 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
152                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
153 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
154 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
155 qed-.
156
157 (* Advanced inversion lemmas ************************************************)
158
159 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
160                              ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
161 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
162 [ #H destruct
163 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
164 ]
165 qed-.
166
167 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
168                              ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
169 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
170 [ #_ #H destruct
171 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
172 ]
173 qed-.
174
175 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
176                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
177                                       Y2 = L2.ⓑ{I}V2.
178 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
179 [ #H destruct
180 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
181   /2 width=5 by ex3_2_intro/
182 ]
183 qed-.
184
185 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
186                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
187                                       Y1 = L1.ⓑ{I}V1.
188 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
189 [ #_ #H destruct
190 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
191   /2 width=5 by ex3_2_intro/
192 ]
193 qed-.
194
195 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
196                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
197 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
198 [ #H destruct
199 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
200 ]
201 qed-.
202
203 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
204                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
205 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
206 [ #_ #H destruct
207 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
208 ]
209 qed-.
210
211 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
212                              ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
213 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
214 [ #H destruct
215 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
216 ]
217 qed-.
218
219 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
220                              ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
221 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
222 [ #_ #H destruct
223 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
224 ]
225 qed-.
226
227 (* Basic forward lemmas *****************************************************)
228
229 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
230 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
231 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
232 qed-.
233
234 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
235                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
236 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
237 qed-.
238
239 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
240 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
241 qed-.
242
243 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
244 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
245 qed-.
246
247 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
248 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
249 qed-.
250
251 (* Basic_2A1: removed theorems 24:
252               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
253               llpx_sn_bind llpx_sn_flat
254               llpx_sn_inv_bind llpx_sn_inv_flat
255               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
256               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
257               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
258               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
259 *)
260 *)