]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/multiple/mr2_minus.ma
first constructions with classes
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / multiple / mr2_minus.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/ynat/ynat_minus.ma".
16 include "basic_2/notation/relations/rminus_3.ma".
17 include "basic_2/multiple/mr2.ma".
18
19 (* MULTIPLE RELOCATION WITH PAIRS *******************************************)
20
21 inductive minuss: nat → relation (list2 ynat nat) ≝
22 | minuss_nil: ∀i. minuss i (◊) (◊)
23 | minuss_lt : ∀cs1,cs2,l,m,i. yinj i < l → minuss i cs1 cs2 →
24               minuss i ({l, m} @ cs1) ({l - i, m} @ cs2)
25 | minuss_ge : ∀cs1,cs2,l,m,i. l ≤ yinj i → minuss (m + i) cs1 cs2 →
26               minuss i ({l, m} @ cs1) cs2
27 .
28
29 interpretation "minus (multiple relocation with pairs)"
30    'RMinus cs1 i cs2 = (minuss i cs1 cs2).
31
32 (* Basic inversion lemmas ***************************************************)
33
34 fact minuss_inv_nil1_aux: ∀cs1,cs2,i. cs1 ▭ i ≡ cs2 → cs1 = ◊ → cs2 = ◊.
35 #cs1 #cs2 #i * -cs1 -cs2 -i
36 [ //
37 | #cs1 #cs2 #l #m #i #_ #_ #H destruct
38 | #cs1 #cs2 #l #m #i #_ #_ #H destruct
39 ]
40 qed-.
41
42 lemma minuss_inv_nil1: ∀cs2,i. ◊ ▭ i ≡ cs2 → cs2 = ◊.
43 /2 width=4 by minuss_inv_nil1_aux/ qed-.
44
45 fact minuss_inv_cons1_aux: ∀cs1,cs2,i. cs1 ▭ i ≡ cs2 →
46                            ∀l,m,cs. cs1 = {l, m} @ cs →
47                            l ≤ i ∧ cs ▭ m + i ≡ cs2 ∨
48                            ∃∃cs0. i < l & cs ▭ i ≡ cs0 &
49                                    cs2 = {l - i, m} @ cs0.
50 #cs1 #cs2 #i * -cs1 -cs2 -i
51 [ #i #l #m #cs #H destruct
52 | #cs1 #cs #l1 #m1 #i1 #Hil1 #Hcs #l2 #m2 #cs2 #H destruct /3 width=3 by ex3_intro, or_intror/
53 | #cs1 #cs #l1 #m1 #i1 #Hli1 #Hcs #l2 #m2 #cs2 #H destruct /3 width=1 by or_introl, conj/
54 ]
55 qed-.
56
57 lemma minuss_inv_cons1: ∀cs1,cs2,l,m,i. {l, m} @ cs1 ▭ i ≡ cs2 →
58                         l ≤ i ∧ cs1 ▭ m + i ≡ cs2 ∨
59                         ∃∃cs. i < l & cs1 ▭ i ≡ cs &
60                                cs2 = {l - i, m} @ cs.
61 /2 width=3 by minuss_inv_cons1_aux/ qed-.
62
63 lemma minuss_inv_cons1_ge: ∀cs1,cs2,l,m,i. {l, m} @ cs1 ▭ i ≡ cs2 →
64                            l ≤ i → cs1 ▭ m + i ≡ cs2.
65 #cs1 #cs2 #l #m #i #H
66 elim (minuss_inv_cons1 … H) -H * // #cs #Hil #_ #_ #Hli
67 elim (ylt_yle_false … Hil Hli)
68 qed-.
69
70 lemma minuss_inv_cons1_lt: ∀cs1,cs2,l,m,i. {l, m} @ cs1 ▭ i ≡ cs2 →
71                            i < l →
72                            ∃∃cs. cs1 ▭ i ≡ cs & cs2 = {l - i, m} @ cs.
73 #cs1 #cs2 #l #m #i #H elim (minuss_inv_cons1 … H) -H * /2 width=3 by ex2_intro/
74 #Hli #_ #Hil elim (ylt_yle_false … Hil Hli)
75 qed-.