]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_lexs.ma
- reconstruction of lfpx_frees.ma begins ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / relocation / lexs_lexs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_sand.ma".
16 include "ground_2/relocation/rtmap_sor.ma".
17 include "basic_2/relocation/lexs.ma".
18 include "basic_2/relocation/drops.ma".
19
20 (* GENERIC ENTRYWISE EXTENSION OF CONTEXT-SENSITIVE REALTIONS FOR TERMS *****)
21
22 (* Main properties **********************************************************)
23
24 theorem lexs_trans_gen (RN1) (RP1) (RN2) (RP2) (RN) (RP) (f):
25                        lexs_transitive RN1 RN2 RN RN1 RP1 →
26                        lexs_transitive RP1 RP2 RP RN1 RP1 →
27                        ∀L1,L0. L1 ⦻*[RN1, RP1, f] L0 →
28                        ∀L2. L0 ⦻*[RN2, RP2, f] L2 →
29                        L1 ⦻*[RN, RP, f] L2.
30 #RN1 #RP1 #RN2 #RP2 #RN #RP #f #HN #HP #L1 #L0 #H elim H -f -L1 -L0
31 [ #f #L2 #H >(lexs_inv_atom1 … H) -L2 //
32 | #f #I #K1 #K #V1 #V #HK1 #HV1 #IH #L2 #H elim (lexs_inv_next1 … H) -H
33   #K2 #V2 #HK2 #HV2 #H destruct /4 width=6 by lexs_next/
34 | #f #I #K1 #K #V1 #V #HK1 #HV1 #IH #L2 #H elim (lexs_inv_push1 … H) -H
35   #K2 #V2 #HK2 #HV2 #H destruct /4 width=6 by lexs_push/
36 ]
37 qed-.
38
39 (* Basic_2A1: includes: lpx_sn_trans *)
40 theorem lexs_trans (RN) (RP) (f): lexs_transitive RN RN RN RN RP →
41                                   lexs_transitive RP RP RP RN RP →
42                                   Transitive … (lexs RN RP f).
43 /2 width=9 by lexs_trans_gen/ qed-.
44
45 (* Basic_2A1: includes: lpx_sn_conf *)
46 theorem lexs_conf (RN1) (RP1) (RN2) (RP2):
47                   ∀L,f.
48                   (∀g,I,K,V,n. ⬇*[n] L ≡ K.ⓑ{I}V → ⫯g = ⫱*[n] f → lexs_pw_confluent2_R RN1 RN2 RN1 RP1 RN2 RP2 g K V) →
49                   (∀g,I,K,V,n. ⬇*[n] L ≡ K.ⓑ{I}V → ↑g = ⫱*[n] f → lexs_pw_confluent2_R RP1 RP2 RN1 RP1 RN2 RP2 g K V) →
50                   pw_confluent2 … (lexs RN1 RP1 f) (lexs RN2 RP2 f) L.
51 #RN1 #RP1 #RN2 #RP2 #L elim L -L
52 [ #f #_ #_ #L1 #H1 #L2 #H2 >(lexs_inv_atom1 … H1) >(lexs_inv_atom1 … H2) -H2 -H1
53   /2 width=3 by lexs_atom, ex2_intro/
54 | #L #I #V #IH #f elim (pn_split f) * #g #H destruct
55   #HN #HP #Y1 #H1 #Y2 #H2
56   [ elim (lexs_inv_push1 … H1) -H1 #L1 #V1 #HL1 #HV1 #H destruct
57     elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #HL2 #HV2 #H destruct
58     elim (HP … 0 … HV1 … HV2 … HL1 … HL2) -HV1 -HV2 /2 width=2 by drops_refl/ #V #HV1 #HV2
59     elim (IH … HL1 … HL2) -IH -HL1 -HL2 /3 width=5 by drops_drop, lexs_push, ex2_intro/
60   | elim (lexs_inv_next1 … H1) -H1 #L1 #V1 #HL1 #HV1 #H destruct
61     elim (lexs_inv_next1 … H2) -H2 #L2 #V2 #HL2 #HV2 #H destruct
62     elim (HN … 0 … HV1 … HV2 … HL1 … HL2) -HV1 -HV2 /2 width=2 by drops_refl/ #V #HV1 #HV2
63     elim (IH … HL1 … HL2) -IH -HL1 -HL2 /3 width=5 by drops_drop, lexs_next, ex2_intro/
64   ]
65 ]
66 qed-.
67
68 theorem lexs_canc_sn: ∀RN,RP,f. Transitive … (lexs RN RP f) →
69                                 symmetric … (lexs RN RP f) →
70                                 left_cancellable … (lexs RN RP f).
71 /3 width=3 by/ qed-.
72
73 theorem lexs_canc_dx: ∀RN,RP,f. Transitive … (lexs RN RP f) →
74                                 symmetric … (lexs RN RP f) →
75                                 right_cancellable … (lexs RN RP f).
76 /3 width=3 by/ qed-.
77
78 lemma lexs_meet: ∀RN,RP,L1,L2.
79                  ∀f1. L1 ⦻*[RN, RP, f1] L2 →
80                  ∀f2. L1 ⦻*[RN, RP, f2] L2 →
81                  ∀f. f1 ⋒ f2 ≡ f → L1 ⦻*[RN, RP, f] L2.
82 #RN #RP #L1 #L2 #f1 #H elim H -f1 -L1 -L2 //
83 #f1 #I #L1 #L2 #V1 #V2 #_ #HV12 #IH #f2 #H #f #Hf
84 elim (pn_split f2) * #g2 #H2 destruct
85 try elim (lexs_inv_push … H) try elim (lexs_inv_next … H) -H
86 [ elim (sand_inv_npx … Hf) | elim (sand_inv_nnx … Hf)
87 | elim (sand_inv_ppx … Hf) | elim (sand_inv_pnx … Hf)
88 ] -Hf /3 width=5 by lexs_next, lexs_push/
89 qed-.
90
91 lemma lexs_join: ∀RN,RP,L1,L2.
92                  ∀f1. L1 ⦻*[RN, RP, f1] L2 →
93                  ∀f2. L1 ⦻*[RN, RP, f2] L2 →
94                  ∀f. f1 ⋓ f2 ≡ f → L1 ⦻*[RN, RP, f] L2.
95 #RN #RP #L1 #L2 #f1 #H elim H -f1 -L1 -L2 //
96 #f1 #I #L1 #L2 #V1 #V2 #_ #HV12 #IH #f2 #H #f #Hf
97 elim (pn_split f2) * #g2 #H2 destruct
98 try elim (lexs_inv_push … H) try elim (lexs_inv_next … H) -H
99 [ elim (sor_inv_npx … Hf) | elim (sor_inv_nnx … Hf)
100 | elim (sor_inv_ppx … Hf) | elim (sor_inv_pnx … Hf)
101 ] -Hf /3 width=5 by lexs_next, lexs_push/
102 qed-.