]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_cpxs.ma
949e6902c4225560749e8e15e285e6928e5d99ae
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_computation / cpxs_cpxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/rt_transition/cpx_lsubr.ma".
16 include "basic_2/rt_computation/cpxs.ma".
17
18 (* UNBOUND CONTEXT-SENSITIVE PARALLEL RT-COMPUTATION FOR TERMS **************)
19
20 (* Main properties **********************************************************)
21
22 theorem cpxs_trans: ∀h,G,L. Transitive … (cpxs h G L).
23 normalize /2 width=3 by trans_TC/ qed-.
24
25 theorem cpxs_bind: ∀h,p,I,G,L,V1,V2,T1,T2. ⦃G,L.ⓑ{I}V1⦄ ⊢ T1 ⬈*[h] T2 →
26                    ⦃G,L⦄ ⊢ V1 ⬈*[h] V2 →
27                    ⦃G,L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈*[h] ⓑ{p,I}V2.T2.
28 #h #p #I #G #L #V1 #V2 #T1 #T2 #HT12 #H @(cpxs_ind … H) -V2
29 /3 width=5 by cpxs_trans, cpxs_bind_dx/
30 qed.
31
32 theorem cpxs_flat: ∀h,I,G,L,V1,V2,T1,T2. ⦃G,L⦄ ⊢ T1 ⬈*[h] T2 →
33                    ⦃G,L⦄ ⊢ V1 ⬈*[h] V2 →
34                    ⦃G,L⦄ ⊢ ⓕ{I}V1.T1 ⬈*[h] ⓕ{I}V2.T2.
35 #h #I #G #L #V1 #V2 #T1 #T2 #HT12 #H @(cpxs_ind … H) -V2
36 /3 width=5 by cpxs_trans, cpxs_flat_dx/
37 qed.
38
39 theorem cpxs_beta_rc: ∀h,p,G,L,V1,V2,W1,W2,T1,T2.
40                       ⦃G,L⦄ ⊢ V1 ⬈[h] V2 → ⦃G,L.ⓛW1⦄ ⊢ T1 ⬈*[h] T2 → ⦃G,L⦄ ⊢ W1 ⬈*[h] W2 →
41                       ⦃G,L⦄ ⊢ ⓐV1.ⓛ{p}W1.T1 ⬈*[h] ⓓ{p}ⓝW2.V2.T2.
42 #h #p #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HT12 #H @(cpxs_ind … H) -W2
43 /4 width=5 by cpxs_trans, cpxs_beta_dx, cpxs_bind_dx, cpx_pair_sn/
44 qed.
45
46 theorem cpxs_beta: ∀h,p,G,L,V1,V2,W1,W2,T1,T2.
47                    ⦃G,L.ⓛW1⦄ ⊢ T1 ⬈*[h] T2 → ⦃G,L⦄ ⊢ W1 ⬈*[h] W2 → ⦃G,L⦄ ⊢ V1 ⬈*[h] V2 →
48                    ⦃G,L⦄ ⊢ ⓐV1.ⓛ{p}W1.T1 ⬈*[h] ⓓ{p}ⓝW2.V2.T2.
49 #h #p #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HT12 #HW12 #H @(cpxs_ind … H) -V2
50 /4 width=5 by cpxs_trans, cpxs_beta_rc, cpxs_bind_dx, cpx_flat/
51 qed.
52
53 theorem cpxs_theta_rc: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2.
54                        ⦃G,L⦄ ⊢ V1 ⬈[h] V → ⇧*[1] V ≘ V2 →
55                        ⦃G,L.ⓓW1⦄ ⊢ T1 ⬈*[h] T2 → ⦃G,L⦄ ⊢ W1 ⬈*[h] W2 →
56                        ⦃G,L⦄ ⊢ ⓐV1.ⓓ{p}W1.T1 ⬈*[h] ⓓ{p}W2.ⓐV2.T2.
57 #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 #HT12 #H @(cpxs_ind … H) -W2
58 /3 width=5 by cpxs_trans, cpxs_theta_dx, cpxs_bind_dx/
59 qed.
60
61 theorem cpxs_theta: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2.
62                     ⇧*[1] V ≘ V2 → ⦃G,L⦄ ⊢ W1 ⬈*[h] W2 →
63                     ⦃G,L.ⓓW1⦄ ⊢ T1 ⬈*[h] T2 → ⦃G,L⦄ ⊢ V1 ⬈*[h] V →
64                     ⦃G,L⦄ ⊢ ⓐV1.ⓓ{p}W1.T1 ⬈*[h] ⓓ{p}W2.ⓐV2.T2.
65 #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV2 #HW12 #HT12 #H @(TC_ind_dx … V1 H) -V1
66 /3 width=5 by cpxs_trans, cpxs_theta_rc, cpxs_flat_dx/
67 qed.
68
69 (* Advanced inversion lemmas ************************************************)
70
71 lemma cpxs_inv_appl1: ∀h,G,L,V1,T1,U2. ⦃G,L⦄ ⊢ ⓐV1.T1 ⬈*[h] U2 →
72                       ∨∨ ∃∃V2,T2.       ⦃G,L⦄ ⊢ V1 ⬈*[h] V2 & ⦃G,L⦄ ⊢ T1 ⬈*[h] T2 &
73                                         U2 = ⓐV2.T2
74                        | ∃∃p,W,T.       ⦃G,L⦄ ⊢ T1 ⬈*[h] ⓛ{p}W.T & ⦃G,L⦄ ⊢ ⓓ{p}ⓝW.V1.T ⬈*[h] U2
75                        | ∃∃p,V0,V2,V,T. ⦃G,L⦄ ⊢ V1 ⬈*[h] V0 & ⇧*[1] V0 ≘ V2 &
76                                         ⦃G,L⦄ ⊢ T1 ⬈*[h] ⓓ{p}V.T & ⦃G,L⦄ ⊢ ⓓ{p}V.ⓐV2.T ⬈*[h] U2.
77 #h #G #L #V1 #T1 #U2 #H @(cpxs_ind … H) -U2 [ /3 width=5 by or3_intro0, ex3_2_intro/ ]
78 #U #U2 #_ #HU2 * *
79 [ #V0 #T0 #HV10 #HT10 #H destruct
80   elim (cpx_inv_appl1 … HU2) -HU2 *
81   [ #V2 #T2 #HV02 #HT02 #H destruct /4 width=5 by cpxs_strap1, or3_intro0, ex3_2_intro/
82   | #p #V2 #W #W2 #T #T2 #HV02 #HW2 #HT2 #H1 #H2 destruct
83     lapply (cpxs_strap1 … HV10 … HV02) -V0 #HV12
84     lapply (lsubr_cpx_trans … HT2 (L.ⓓⓝW.V1) ?) -HT2
85     /5 width=5 by cpxs_bind, cpxs_flat_dx, cpx_cpxs, lsubr_beta, ex2_3_intro, or3_intro1/
86   | #p #V #V2 #W0 #W2 #T #T2 #HV0 #HV2 #HW02 #HT2 #H1 #H2 destruct
87     /5 width=10 by cpxs_flat_sn, cpxs_bind_dx, cpxs_strap1, ex4_5_intro, or3_intro2/
88   ]
89 | /4 width=9 by cpxs_strap1, or3_intro1, ex2_3_intro/
90 | /4 width=11 by cpxs_strap1, or3_intro2, ex4_5_intro/
91 ]
92 qed-.