]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx.ma
milestone in basic_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_computation / csx.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predtystrong_4.ma".
16 include "static_2/syntax/tdeq.ma".
17 include "basic_2/rt_transition/cpx.ma".
18
19 (* STRONGLY NORMALIZING TERMS FOR UNBOUND PARALLEL RT-TRANSITION ************)
20
21 definition csx: ∀h. relation3 genv lenv term ≝
22                 λh,G,L. SN … (cpx h G L) tdeq.
23
24 interpretation
25    "strong normalization for unbound context-sensitive parallel rt-transition (term)"
26    'PRedTyStrong h G L T = (csx h G L T).
27
28 (* Basic eliminators ********************************************************)
29
30 lemma csx_ind: ∀h,G,L. ∀Q:predicate term.
31                (∀T1. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T1⦄ →
32                      (∀T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → (T1 ≛ T2 → ⊥) → Q T2) →
33                      Q T1
34                ) →
35                ∀T. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T⦄ →  Q T.
36 #h #G #L #Q #H0 #T1 #H elim H -T1
37 /5 width=1 by SN_intro/
38 qed-.
39
40 (* Basic properties *********************************************************)
41
42 (* Basic_1: was just: sn3_pr2_intro *)
43 lemma csx_intro: ∀h,G,L,T1.
44                  (∀T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → (T1 ≛ T2 → ⊥) → ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T2⦄) →
45                  ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T1⦄.
46 /4 width=1 by SN_intro/ qed.
47
48 (* Basic forward lemmas *****************************************************)
49
50 fact csx_fwd_pair_sn_aux: ∀h,G,L,U. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃U⦄ →
51                           ∀I,V,T. U = ②{I}V.T → ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃V⦄.
52 #h #G #L #U #H elim H -H #U0 #_ #IH #I #V #T #H destruct
53 @csx_intro #V2 #HLV2 #HV2
54 @(IH (②{I}V2.T)) -IH /2 width=3 by cpx_pair_sn/ -HLV2
55 #H elim (tdeq_inv_pair … H) -H /2 width=1 by/
56 qed-.
57
58 (* Basic_1: was just: sn3_gen_head *)
59 lemma csx_fwd_pair_sn: ∀h,I,G,L,V,T. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃②{I}V.T⦄ → ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃V⦄.
60 /2 width=5 by csx_fwd_pair_sn_aux/ qed-.
61
62 fact csx_fwd_bind_dx_aux: ∀h,G,L,U. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃U⦄ →
63                           ∀p,I,V,T. U = ⓑ{p,I}V.T → ⦃G, L.ⓑ{I}V⦄ ⊢ ⬈*[h] 𝐒⦃T⦄.
64 #h #G #L #U #H elim H -H #U0 #_ #IH #p #I #V #T #H destruct
65 @csx_intro #T2 #HLT2 #HT2
66 @(IH (ⓑ{p,I}V.T2)) -IH /2 width=3 by cpx_bind/ -HLT2
67 #H elim (tdeq_inv_pair … H) -H /2 width=1 by/
68 qed-.
69
70 (* Basic_1: was just: sn3_gen_bind *)
71 lemma csx_fwd_bind_dx: ∀h,p,I,G,L,V,T. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃ⓑ{p,I}V.T⦄ → ⦃G, L.ⓑ{I}V⦄ ⊢ ⬈*[h] 𝐒⦃T⦄.
72 /2 width=4 by csx_fwd_bind_dx_aux/ qed-.
73
74 fact csx_fwd_flat_dx_aux: ∀h,G,L,U. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃U⦄ →
75                           ∀I,V,T. U = ⓕ{I}V.T → ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T⦄.
76 #h #G #L #U #H elim H -H #U0 #_ #IH #I #V #T #H destruct
77 @csx_intro #T2 #HLT2 #HT2
78 @(IH (ⓕ{I}V.T2)) -IH /2 width=3 by cpx_flat/ -HLT2
79 #H elim (tdeq_inv_pair … H) -H /2 width=1 by/
80 qed-.
81
82 (* Basic_1: was just: sn3_gen_flat *)
83 lemma csx_fwd_flat_dx: ∀h,I,G,L,V,T. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃ⓕ{I}V.T⦄ → ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T⦄.
84 /2 width=5 by csx_fwd_flat_dx_aux/ qed-.
85
86 lemma csx_fwd_bind: ∀h,p,I,G,L,V,T. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃ⓑ{p,I}V.T⦄ →
87                     ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃V⦄ ∧ ⦃G, L.ⓑ{I}V⦄ ⊢ ⬈*[h] 𝐒⦃T⦄.
88 /3 width=3 by csx_fwd_pair_sn, csx_fwd_bind_dx, conj/ qed-.
89
90 lemma csx_fwd_flat: ∀h,I,G,L,V,T. ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃ⓕ{I}V.T⦄ →
91                     ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃V⦄ ∧ ⦃G, L⦄ ⊢ ⬈*[h] 𝐒⦃T⦄.
92 /3 width=3 by csx_fwd_pair_sn, csx_fwd_flat_dx, conj/ qed-.
93
94 (* Basic_1: removed theorems 14:
95             sn3_cdelta
96             sn3_gen_cflat sn3_cflat sn3_cpr3_trans sn3_shift sn3_change
97             sn3_appl_cast sn3_appl_beta sn3_appl_lref sn3_appl_abbr
98             sn3_appl_appls sn3_bind sn3_appl_bind sn3_appls_bind
99 *)
100 (* Basic_2A1: removed theorems 6:
101               csxa_ind csxa_intro csxa_cpxs_trans csxa_intro_cpx 
102               csx_csxa csxa_csx
103 *)