]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm.ma
first definition of cpm:
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / cpm.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/pred_6.ma".
16 include "basic_2/notation/relations/pred_5.ma".
17 include "basic_2/rt_transition/cpg.ma".
18
19 (* T-BOUND CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************)
20
21 (* Basic_2A1: includes: cpr *)
22 definition cpm (n) (h): relation4 genv lenv term term ≝
23                         λG,L,T1,T2. ∃∃c. 𝐑𝐓⦃n, c⦄ & ⦃G, L⦄ ⊢ T1 ⬈[c, h] T2.
24
25 interpretation
26    "semi-counted context-sensitive parallel rt-transition (term)"
27    'PRed n h G L T1 T2 = (cpm n h G L T1 T2).
28
29 interpretation
30    "context-sensitive parallel r-transition (term)"
31    'PRed h G L T1 T2 = (cpm O h G L T1 T2).
32
33 (* Basic properties *********************************************************)
34
35 lemma cpm_ess: ∀h,G,L,s. ⦃G, L⦄ ⊢ ⋆s ➡[1, h] ⋆(next h s).
36 /2 width=3 by cpg_ess, ex2_intro/ qed.
37
38 lemma cpm_delta: ∀n,h,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 →
39                  ⬆*[1] V2 ≡ W2 → ⦃G, K.ⓓV1⦄ ⊢ #0 ➡[n, h] W2.
40 #n #h #G #K #V1 #V2 #W2 *
41 /3 width=5 by cpg_delta, ex2_intro/
42 qed.
43
44 lemma cpm_ell: ∀n,h,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 →
45                ⬆*[1] V2 ≡ W2 → ⦃G, K.ⓛV1⦄ ⊢ #0 ➡[⫯n, h] W2.
46 #n #h #G #K #V1 #V2 #W2 *
47 /3 width=5 by cpg_ell, ex2_intro, isrt_succ/
48 qed.
49
50 lemma cpm_lref: ∀n,h,I,G,K,V,T,U,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T →
51                 ⬆*[1] T ≡ U → ⦃G, K.ⓑ{I}V⦄ ⊢ #⫯i ➡[n, h] U.
52 #n #h #I #G #K #V #T #U #i *
53 /3 width=5 by cpg_lref, ex2_intro/
54 qed.
55
56 lemma cpm_bind: ∀n,h,p,I,G,L,V1,V2,T1,T2.
57                 ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[n, h] T2 →
58                 ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] ⓑ{p,I}V2.T2.
59 #n #h #p #I #G #L #V1 #V2 #T1 #T2 * #riV #rhV #HV12 *
60 /5 width=5 by cpg_bind, isrt_plus_O1, isr_shift, ex2_intro/
61 qed.
62
63 lemma cpm_flat: ∀n,h,I,G,L,V1,V2,T1,T2.
64                 ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L⦄ ⊢ T1 ➡[n, h] T2 →
65                 ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ➡[n, h] ⓕ{I}V2.T2.
66 #n #h #I #G #L #V1 #V2 #T1 #T2 * #riV #rhV #HV12 *
67 /5 width=5 by isrt_plus_O1, isr_shift, cpg_flat, ex2_intro/
68 qed.
69
70 lemma cpm_zeta: ∀n,h,G,L,V,T1,T,T2. ⦃G, L.ⓓV⦄ ⊢ T1 ➡[n, h] T →
71                 ⬆*[1] T2 ≡ T → ⦃G, L⦄ ⊢ +ⓓV.T1 ➡[n, h] T2.
72 #n #h #G #L #V #T1 #T #T2 *
73 /3 width=5 by cpg_zeta, isrt_plus_O2, ex2_intro/
74 qed.
75
76 lemma cpm_eps: ∀n,h,G,L,V,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[n, h] T2 → ⦃G, L⦄ ⊢ ⓝV.T1 ➡[n, h] T2.
77 #n #h #G #L #V #T1 #T2 *
78 /3 width=3 by cpg_eps, isrt_plus_O2, ex2_intro/
79 qed.
80
81 lemma cpm_ee: ∀n,h,G,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ➡[n, h] V2 → ⦃G, L⦄ ⊢ ⓝV1.T ➡[⫯n, h] V2.
82 #n #h #G #L #V1 #V2 #T *
83 /3 width=3 by cpg_ee, isrt_succ, ex2_intro/
84 qed.
85
86 lemma cpm_beta: ∀n,h,p,G,L,V1,V2,W1,W2,T1,T2.
87                 ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L⦄ ⊢ W1 ➡[h] W2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[n, h] T2 →
88                 ⦃G, L⦄ ⊢ ⓐV1.ⓛ{p}W1.T1 ➡[n, h] ⓓ{p}ⓝW2.V2.T2.
89 #n #h #p #G #L #V1 #V2 #W1 #W2 #T1 #T2 * #riV #rhV #HV12 * #riW #rhW #HW12 *
90 /6 width=7 by cpg_beta, isrt_plus_O2, isrt_plus, isr_shift, ex2_intro/
91 qed.
92
93 lemma cpm_theta: ∀n,h,p,G,L,V1,V,V2,W1,W2,T1,T2.
94                  ⦃G, L⦄ ⊢ V1 ➡[h] V → ⬆*[1] V ≡ V2 → ⦃G, L⦄ ⊢ W1 ➡[h] W2 →
95                  ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[n, h] T2 →
96                  ⦃G, L⦄ ⊢ ⓐV1.ⓓ{p}W1.T1 ➡[n, h] ⓓ{p}W2.ⓐV2.T2.
97 #n #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 * #riV #rhV #HV1 #HV2 * #riW #rhW #HW12 *
98 /6 width=9 by cpg_theta, isrt_plus_O2, isrt_plus, isr_shift, ex2_intro/
99 qed.
100
101 (* Basic properties on r-transition *****************************************)
102
103 (* Basic_2A1: includes: cpr_atom *)
104 lemma cpr_refl: ∀h,G,L. reflexive … (cpm 0 h G L).
105 /2 width=3 by ex2_intro/ qed.
106
107 lemma cpr_pair_sn: ∀h,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 →
108                    ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ➡[h] ②{I}V2.T.
109 #h #I #G #L #V1 #V2 *
110 /3 width=3 by cpg_pair_sn, isr_shift, ex2_intro/
111 qed.
112
113 (* Basic inversion lemmas ***************************************************)
114
115 lemma cpm_inv_atom1: ∀n,h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ➡[n, h] T2 →
116                      ∨∨ T2 = ⓪{J} ∧ n = 0
117                       | ∃∃s. T2 = ⋆(next h s) & J = Sort s & n = 1
118                       | ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 & ⬆*[1] V2 ≡ T2 &
119                                    L = K.ⓓV1 & J = LRef 0
120                       | ∃∃m,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[m, h] V2 & ⬆*[1] V2 ≡ T2 &
121                                      L = K.ⓛV1 & J = LRef 0 & n = ⫯m
122                       | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 &
123                                      L = K.ⓑ{I}V & J = LRef (⫯i).
124 #n #h #J #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1 … H) -H *
125 [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or5_intro0, conj/
126 | #s #H1 #H2 #H3 destruct /4 width=3 by isrt_inv_01, or5_intro1, ex3_intro/
127 | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 #H3 destruct
128   /4 width=6 by or5_intro2, ex4_3_intro, ex2_intro/
129 | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 #H3 destruct
130   elim (isrt_inv_plus_SO_dx … Hc) -Hc // #m #Hc #H destruct
131   /4 width=9 by or5_intro3, ex5_4_intro, ex2_intro/
132 | #I #K #V1 #V2 #i #HV2 #HVT2 #H1 #H2 destruct
133   /4 width=9 by or5_intro4, ex4_5_intro, ex2_intro/
134 ]
135 qed-.
136
137 lemma cpm_inv_sort1: ∀n,h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ➡[n,h] T2 →
138                      (T2 = ⋆s ∧ n = 0) ∨
139                      (T2 = ⋆(next h s) ∧ n = 1).
140 #n #h #G #L #T2 #s * #c #Hc #H elim (cpg_inv_sort1 … H) -H *
141 #H1 #H2 destruct
142 /4 width=1 by isrt_inv_01, isrt_inv_00, or_introl, or_intror, conj/
143 qed-.
144
145 lemma cpm_inv_zero1: ∀n,h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[n, h] T2 →
146                      ∨∨ (T2 = #0 ∧ n = 0)
147                       | ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 & ⬆*[1] V2 ≡ T2 &
148                                    L = K.ⓓV1
149                       | ∃∃m,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[m, h] V2 & ⬆*[1] V2 ≡ T2 &
150                                      L = K.ⓛV1 & n = ⫯m.
151 #n #h #G #L #T2 * #c #Hc #H elim (cpg_inv_zero1 … H) -H *
152 [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or3_intro0, conj/
153 | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 destruct
154   /4 width=8 by or3_intro1, ex3_3_intro, ex2_intro/
155 | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 destruct
156   elim (isrt_inv_plus_SO_dx … Hc) -Hc // #m #Hc #H destruct
157   /4 width=8 by or3_intro2, ex4_4_intro, ex2_intro/
158 ]
159 qed-.
160
161 lemma cpm_inv_lref1: ∀n,h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ➡[n, h] T2 →
162                      (T2 = #(⫯i) ∧ n = 0) ∨
163                      ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
164 #n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1 … H) -H *
165 [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or_introl, conj/
166 | #I #K #V1 #V2 #HV2 #HVT2 #H1 destruct
167  /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
168 ]
169 qed-.
170
171 lemma cpm_inv_gref1: ∀n,h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ➡[n, h] T2 → T2 = §l ∧ n = 0.
172 #n #h #G #L #T2 #l * #c #Hc #H elim (cpg_inv_gref1 … H) -H
173 #H1 #H2 destruct /3 width=1 by isrt_inv_00, conj/ 
174 qed-.
175
176 lemma cpm_inv_bind1: ∀n,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] U2 → (
177                      ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[n, h] T2 &
178                               U2 = ⓑ{p,I}V2.T2
179                      ) ∨
180                      ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T &
181                           p = true & I = Abbr.
182 #n #h #p #I #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_bind1 … H) -H *
183 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
184   elim (isrt_inv_plus … Hc) -Hc #nV #nT #HcV #HcT #H destruct
185   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
186   /4 width=5 by ex3_2_intro, ex2_intro, or_introl/
187 | #cT #T2 #HT12 #HUT2 #H1 #H2 #H3 destruct
188   /5 width=3 by isrt_inv_plus_O_dx, ex4_intro, ex2_intro, or_intror/
189 ]
190 qed-.
191
192 lemma cpm_inv_abbr1: ∀n,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ➡[n, h] U2 → (
193                      ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T2 &
194                               U2 = ⓓ{p}V2.T2
195                      ) ∨
196                      ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T & p = true.
197 #n #h #p #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_abbr1 … H) -H *
198 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
199   elim (isrt_inv_plus … Hc) -Hc #nV #nT #HcV #HcT #H destruct
200   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
201   /4 width=5 by ex3_2_intro, ex2_intro, or_introl/
202 | #cT #T2 #HT12 #HUT2 #H1 #H2 destruct
203   /5 width=3 by isrt_inv_plus_O_dx, ex3_intro, ex2_intro, or_intror/
204 ]
205 qed-.
206
207 lemma cpm_inv_abst1: ∀n,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓛ{p}V1.T1 ➡[n, h] U2 →
208                      ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓛV1⦄ ⊢ T1 ➡[n, h] T2 &
209                               U2 = ⓛ{p}V2.T2.
210 #n #h #p #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_abst1 … H) -H
211 #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
212 elim (isrt_inv_plus … Hc) -Hc #nV #nT #HcV #HcT #H destruct
213 elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
214 /3 width=5 by ex3_2_intro, ex2_intro/
215 qed-.
216
217 lemma cpm_inv_flat1: ∀n,h,I,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓕ{I}V1.U1 ➡[n, h] U2 →
218                      ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[n, h] T2 &
219                                  U2 = ⓕ{I}V2.T2
220                       | (⦃G, L⦄ ⊢ U1 ➡[n, h] U2 ∧ I = Cast)
221                       | ∃∃m. ⦃G, L⦄ ⊢ V1 ➡[m, h] U2 & I = Cast & n = ⫯m
222                       | ∃∃p,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ W1 ➡[h] W2 &
223                                             ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[n, h] T2 &
224                                             U1 = ⓛ{p}W1.T1 &
225                                             U2 = ⓓ{p}ⓝW2.V2.T2 & I = Appl
226                       | ∃∃p,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V & ⬆*[1] V ≡ V2 &
227                                               ⦃G, L⦄ ⊢ W1 ➡[h] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[n, h] T2 &
228                                               U1 = ⓓ{p}W1.T1 &
229                                               U2 = ⓓ{p}W2.ⓐV2.T2 & I = Appl.
230 #n #h #I #G #L #V1 #U1 #U2 * #c #Hc #H elim (cpg_inv_flat1 … H) -H *
231 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
232   elim (isrt_inv_plus … Hc) -Hc #nV #nT #HcV #HcT #H destruct
233   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
234   /4 width=5 by or5_intro0, ex3_2_intro, ex2_intro/
235 | #cU #U12 #H1 #H2 destruct
236   /5 width=3 by isrt_inv_plus_O_dx, or5_intro1, conj, ex2_intro/
237 | #cU #H12 #H1 #H2 destruct
238   elim (isrt_inv_plus_SO_dx … Hc) -Hc // #m #Hc #H destruct
239   /4 width=3 by or5_intro2, ex3_intro, ex2_intro/
240 | #cV #cW #cT #p #V2 #W1 #W2 #T1 #T2 #HV12 #HW12 #HT12 #H1 #H2 #H3 #H4 destruct
241   lapply (isrt_inv_plus_O_dx … Hc ?) -Hc // #Hc
242   elim (isrt_inv_plus … Hc) -Hc #n0 #nT #Hc #HcT #H destruct
243   elim (isrt_inv_plus … Hc) -Hc #nV #nW #HcV #HcW #H destruct
244   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
245   elim (isrt_inv_shift … HcW) -HcW #HcW #H destruct
246   /4 width=11 by or5_intro3, ex6_6_intro, ex2_intro/
247 | #cV #cW #cT #p #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 #HW12 #HT12 #H1 #H2 #H3 #H4 destruct
248   lapply (isrt_inv_plus_O_dx … Hc ?) -Hc // #Hc
249   elim (isrt_inv_plus … Hc) -Hc #n0 #nT #Hc #HcT #H destruct
250   elim (isrt_inv_plus … Hc) -Hc #nV #nW #HcV #HcW #H destruct
251   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
252   elim (isrt_inv_shift … HcW) -HcW #HcW #H destruct
253   /4 width=13 by or5_intro4, ex7_7_intro, ex2_intro/
254 ]
255 qed-.
256
257 lemma cpm_inv_appl1: ∀n,h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓐ V1.U1 ➡[n, h] U2 →
258                      ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[n, h] T2 &
259                                  U2 = ⓐV2.T2
260                       | ∃∃p,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ W1 ➡[h] W2 &
261                                             ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[n, h] T2 &
262                                             U1 = ⓛ{p}W1.T1 & U2 = ⓓ{p}ⓝW2.V2.T2
263                       | ∃∃p,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V & ⬆*[1] V ≡ V2 &
264                                               ⦃G, L⦄ ⊢ W1 ➡[h] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[n, h] T2 &
265                                               U1 = ⓓ{p}W1.T1 & U2 = ⓓ{p}W2.ⓐV2.T2.
266 #n #h #G #L #V1 #U1 #U2 * #c #Hc #H elim (cpg_inv_appl1 … H) -H *
267 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
268   elim (isrt_inv_plus … Hc) -Hc #nV #nT #HcV #HcT #H destruct
269   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
270   /4 width=5 by or3_intro0, ex3_2_intro, ex2_intro/
271 | #cV #cW #cT #p #V2 #W1 #W2 #T1 #T2 #HV12 #HW12 #HT12 #H1 #H2 #H3 destruct
272   lapply (isrt_inv_plus_O_dx … Hc ?) -Hc // #Hc
273   elim (isrt_inv_plus … Hc) -Hc #n0 #nT #Hc #HcT #H destruct
274   elim (isrt_inv_plus … Hc) -Hc #nV #nW #HcV #HcW #H destruct
275   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
276   elim (isrt_inv_shift … HcW) -HcW #HcW #H destruct
277   /4 width=11 by or3_intro1, ex5_6_intro, ex2_intro/
278 | #cV #cW #cT #p #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 #HW12 #HT12 #H1 #H2 #H3 destruct
279   lapply (isrt_inv_plus_O_dx … Hc ?) -Hc // #Hc
280   elim (isrt_inv_plus … Hc) -Hc #n0 #nT #Hc #HcT #H destruct
281   elim (isrt_inv_plus … Hc) -Hc #nV #nW #HcV #HcW #H destruct
282   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
283   elim (isrt_inv_shift … HcW) -HcW #HcW #H destruct
284   /4 width=13 by or3_intro2, ex6_7_intro, ex2_intro/
285 ]
286 qed-.
287
288 lemma cpm_inv_cast1: ∀n,h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝV1.U1 ➡[n, h] U2 →
289                      ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[n,h] T2 &
290                                  U2 = ⓝV2.T2
291                       | ⦃G, L⦄ ⊢ U1 ➡[n, h] U2
292                       | ∃∃m. ⦃G, L⦄ ⊢ V1 ➡[m, h] U2 & n = ⫯m.
293 #n #h #G #L #V1 #U1 #U2 * #c #Hc #H elim (cpg_inv_cast1 … H) -H *
294 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
295   elim (isrt_inv_plus … Hc) -Hc #nV #nT #HcV #HcT #H destruct
296   elim (isrt_inv_shift … HcV) -HcV #HcV #H destruct
297   /4 width=5 by or3_intro0, ex3_2_intro, ex2_intro/
298 | #cU #U12 #H destruct
299   /4 width=3 by isrt_inv_plus_O_dx, or3_intro1, ex2_intro/
300 | #cU #H12 #H destruct
301   elim (isrt_inv_plus_SO_dx … Hc) -Hc // #m #Hc #H destruct
302   /4 width=3 by or3_intro2, ex2_intro/
303 ]
304 qed-.
305
306 (* Basic forward lemmas *****************************************************)
307
308 lemma cpm_fwd_bind1_minus: ∀n,h,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ -ⓑ{I}V1.T1 ➡[n, h] T → ∀p.
309                            ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] ⓑ{p,I}V2.T2 &
310                                     T = -ⓑ{I}V2.T2.
311 #n #h #I #G #L #V1 #T1 #T * #c #Hc #H #p elim (cpg_fwd_bind1_minus … H p) -H
312 /3 width=4 by ex2_2_intro, ex2_intro/
313 qed-.