]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_drops.ma
91544044c3e92b201ccf1619c05b53acf5faf0f1
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / cpm_drops.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/rt_transition/cpg_drops.ma".
16 include "basic_2/rt_transition/cpm.ma".
17
18 (* T-BOUND CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************)
19
20 (* Properties with generic slicing for local environments *******************)
21
22 (* Basic_1: includes: pr0_lift pr2_lift *)
23 (* Basic_2A1: includes: cpr_lift *)
24 lemma cpm_lifts_sn: ∀h,n,G. d_liftable2_sn … lifts (λL. cpm h G L n).
25 #h #n #G #K #T1 #T2 * #c #Hc #HT12 #b #f #L #HLK #U1 #HTU1
26 elim (cpg_lifts_sn … HT12 … HLK … HTU1) -K -T1
27 /3 width=5 by ex2_intro/
28 qed-.
29
30 lemma cpm_lifts_bi: ∀h,n,G. d_liftable2_bi … lifts (λL. cpm h G L n).
31 #h #n #G #K #T1 #T2 * /3 width=11 by cpg_lifts_bi, ex2_intro/
32 qed-.
33
34 (* Inversion lemmas with generic slicing for local environments *************)
35
36 (* Basic_1: includes: pr0_gen_lift pr2_gen_lift *)
37 (* Basic_2A1: includes: cpr_inv_lift1 *)
38 lemma cpm_inv_lifts_sn: ∀h,n,G. d_deliftable2_sn … lifts (λL. cpm h G L n).
39 #h #n #G #L #U1 #U2 * #c #Hc #HU12 #b #f #K #HLK #T1 #HTU1
40 elim (cpg_inv_lifts_sn … HU12 … HLK … HTU1) -L -U1
41 /3 width=5 by ex2_intro/
42 qed-.
43
44 lemma cpm_inv_lifts_bi: ∀h,n,G. d_deliftable2_bi … lifts (λL. cpm h G L n).
45 #h #n #G #L #U1 #U2 * /3 width=11 by cpg_inv_lifts_bi, ex2_intro/
46 qed-.
47
48 (* Advanced properties ******************************************************)
49
50 (* Basic_1: includes: pr2_delta1 *)
51 (* Basic_2A1: includes: cpr_delta *)
52 lemma cpm_delta_drops: ∀h,n,G,L,K,V,V2,W2,i.
53                        ⇩[i] L ≘ K.ⓓV → ❪G,K❫ ⊢ V ➡[h,n] V2 →
54                        ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡[h,n] W2.
55 #h #n #G #L #K #V #V2 #W2 #i #HLK *
56 /3 width=8 by cpg_delta_drops, ex2_intro/
57 qed.
58
59 lemma cpm_ell_drops: ∀h,n,G,L,K,V,V2,W2,i.
60                      ⇩[i] L ≘ K.ⓛV → ❪G,K❫ ⊢ V ➡[h,n] V2 →
61                      ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡[h,↑n] W2.
62 #h #n #G #L #K #V #V2 #W2 #i #HLK *
63 /3 width=8 by cpg_ell_drops, isrt_succ, ex2_intro/
64 qed.
65
66 (* Advanced inversion lemmas ************************************************)
67
68 lemma cpm_inv_atom1_drops: ∀h,n,I,G,L,T2. ❪G,L❫ ⊢ ⓪[I] ➡[h,n] T2 →
69                            ∨∨ T2 = ⓪[I] ∧ n = 0
70                             | ∃∃s. T2 = ⋆(⫯[h]s) & I = Sort s & n = 1
71                             | ∃∃K,V,V2,i. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[h,n] V2 &
72                                           ⇧[↑i] V2 ≘ T2 & I = LRef i
73                             | ∃∃m,K,V,V2,i. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ➡[h,m] V2 &
74                                             ⇧[↑i] V2 ≘ T2 & I = LRef i & n = ↑m.
75 #h #n #I #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1_drops … H) -H *
76 [ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc
77   /3 width=1 by or4_intro0, conj/
78 | #s #H1 #H2 #H3 destruct lapply (isrt_inv_01 … Hc) -Hc
79   /4 width=3 by or4_intro1, ex3_intro, sym_eq/ (**) (* sym_eq *)
80 | #cV #i #K #V1 #V2 #HLK #HV12 #HVT2 #H1 #H2 destruct
81   /4 width=8 by ex4_4_intro, ex2_intro, or4_intro2/
82 | #cV #i #K #V1 #V2 #HLK #HV12 #HVT2 #H1 #H2 destruct
83   elim (isrt_inv_plus_SO_dx … Hc) -Hc
84   /4 width=10 by ex5_5_intro, ex2_intro, or4_intro3/
85 ]
86 qed-.
87
88 lemma cpm_inv_lref1_drops: ∀h,n,G,L,T2,i. ❪G,L❫ ⊢ #i ➡[h,n] T2 →
89                            ∨∨ T2 = #i ∧ n = 0
90                             | ∃∃K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[h,n] V2 &
91                                         ⇧[↑i] V2 ≘ T2
92                             | ∃∃m,K,V,V2. ⇩[i] L ≘ K. ⓛV & ❪G,K❫ ⊢ V ➡[h,m] V2 &
93                                           ⇧[↑i] V2 ≘ T2 & n = ↑m.
94 #h #n #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1_drops … H) -H *
95 [ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc
96   /3 width=1 by or3_intro0, conj/
97 | #cV #K #V1 #V2 #HLK #HV12 #HVT2 #H destruct
98   /4 width=6 by ex3_3_intro, ex2_intro, or3_intro1/
99 | #cV #K #V1 #V2 #HLK #HV12 #HVT2 #H destruct
100   elim (isrt_inv_plus_SO_dx … Hc) -Hc
101   /4 width=8 by ex4_4_intro, ex2_intro, or3_intro2/
102 ]
103 qed-.
104
105 (* Advanced forward lemmas **************************************************)
106
107 fact cpm_fwd_plus_aux (h) (n): ∀G,L,T1,T2. ❪G,L❫ ⊢ T1 ➡[h,n] T2 →
108                                ∀n1,n2. n1+n2 = n →
109                                ∃∃T. ❪G,L❫ ⊢ T1 ➡[h,n1] T & ❪G,L❫ ⊢ T ➡[h,n2] T2.
110 #h #n #G #L #T1 #T2 #H @(cpm_ind … H) -G -L -T1 -T2 -n
111 [ #I #G #L #n1 #n2 #H
112   elim (plus_inv_O3 … H) -H #H1 #H2 destruct
113   /2 width=3 by ex2_intro/
114 | #G #L #s #x1 #n2 #H
115   elim (plus_inv_S3_sn … H) -H *
116   [ #H1 #H2 destruct /2 width=3 by ex2_intro/
117   | #n1 #H1 #H elim (plus_inv_O3 … H) -H #H2 #H3 destruct
118     /2 width=3 by ex2_intro/
119   ]
120 | #n #G #K #V1 #V2 #W2 #_ #IH #HVW2 #n1 #n2 #H destruct
121   elim IH [|*: // ] -IH #V #HV1 #HV2
122   elim (lifts_total V 𝐔❨↑O❩) #W #HVW
123   /5 width=11 by cpm_lifts_bi, cpm_delta, drops_refl, drops_drop, ex2_intro/
124 | #n #G #K #V1 #V2 #W2 #HV12 #IH #HVW2 #x1 #n2 #H
125   elim (plus_inv_S3_sn … H) -H *
126   [ #H1 #H2 destruct -IH /3 width=3 by cpm_ell, ex2_intro/
127   | #n1 #H1 #H2 destruct -HV12
128     elim (IH n1) [|*: // ] -IH #V #HV1 #HV2
129     elim (lifts_total V 𝐔❨↑O❩) #W #HVW
130     /5 width=11 by cpm_lifts_bi, cpm_ell, drops_refl, drops_drop, ex2_intro/
131   ]
132 | #n #I #G #K #T2 #U2 #i #_ #IH #HTU2 #n1 #n2 #H destruct
133   elim IH [|*: // ] -IH #T #HT1 #HT2
134   elim (lifts_total T 𝐔❨↑O❩) #U #HTU
135   /5 width=11 by cpm_lifts_bi, cpm_lref, drops_refl, drops_drop, ex2_intro/
136 | #n #p #I #G #L #V1 #V2 #T1 #T2 #HV12 #_ #_ #IHT #n1 #n2 #H destruct
137   elim IHT [|*: // ] -IHT #T #HT1 #HT2
138   /3 width=5 by cpm_bind, ex2_intro/
139 | #n #G #L #V1 #V2 #T1 #T2 #HV12 #_ #_ #IHT #n1 #n2 #H destruct
140   elim IHT [|*: // ] -IHT #T #HT1 #HT2
141   /3 width=5 by cpm_appl, ex2_intro/
142 | #n #G #L #U1 #U2 #T1 #T2 #_ #_ #IHU #IHT #n1 #n2 #H destruct
143   elim IHU [|*: // ] -IHU #U #HU1 #HU2
144   elim IHT [|*: // ] -IHT #T #HT1 #HT2
145   /3 width=5 by cpm_cast, ex2_intro/
146 | #n #G #K #V #U1 #T1 #T2 #HTU1 #_ #IH #n1 #n2 #H destruct
147   elim IH [|*: // ] -IH #T #HT1 #HT2
148   /3 width=3 by cpm_zeta, ex2_intro/
149 | #n #G #L #U #T1 #T2 #_ #IH #n1 #n2 #H destruct
150   elim IH [|*: // ] -IH #T #HT1 #HT2
151   /3 width=3 by cpm_eps, ex2_intro/
152 | #n #G #L #U1 #U2 #T #HU12 #IH #x1 #n2 #H
153   elim (plus_inv_S3_sn … H) -H *
154   [ #H1 #H2 destruct -IH /3 width=4 by cpm_ee, cpm_cast, ex2_intro/
155   | #n1 #H1 #H2 destruct -HU12
156     elim (IH n1) [|*: // ] -IH #U #HU1 #HU2
157     /3 width=3 by cpm_ee, ex2_intro/
158   ]
159 | #n #p #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HW12 #_ #_ #_ #IH #n1 #n2 #H destruct
160   elim IH [|*: // ] -IH #T #HT1 #HT2
161   /4 width=7 by cpm_beta, cpm_appl, cpm_bind, ex2_intro/
162 | #n #p #G #L #V1 #V2 #U2 #W1 #W2 #T1 #T2 #HV12 #HW12 #_ #_ #_ #IH #HVU2 #n1 #n2 #H destruct
163   elim IH [|*: // ] -IH #T #HT1 #HT2
164   /4 width=7 by cpm_theta, cpm_appl, cpm_bind, ex2_intro/
165 ]
166 qed-.
167
168 lemma cpm_fwd_plus (h) (G) (L): ∀n1,n2,T1,T2. ❪G,L❫ ⊢ T1 ➡[h,n1+n2] T2 →
169                                 ∃∃T. ❪G,L❫ ⊢ T1 ➡[h,n1] T & ❪G,L❫ ⊢ T ➡[h,n2] T2.
170 /2 width=3 by cpm_fwd_plus_aux/ qed-.