]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma
bug fix in the context reduction rule for cast (cpm)
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / cpx.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predty_5.ma".
16 include "basic_2/rt_transition/cpg.ma".
17
18 (* UNCOUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS *************)
19
20 definition cpx (h): relation4 genv lenv term term ≝
21                     λG,L,T1,T2. ∃c. ⦃G, L⦄ ⊢ T1 ⬈[eq_f, c, h] T2.
22
23 interpretation
24    "uncounted context-sensitive parallel rt-transition (term)"
25    'PRedTy h G L T1 T2 = (cpx h G L T1 T2).
26
27 (* Basic properties *********************************************************)
28
29 (* Basic_2A1: was: cpx_st *)
30 lemma cpx_ess: ∀h,G,L,s. ⦃G, L⦄ ⊢ ⋆s ⬈[h] ⋆(next h s).
31 /2 width=2 by cpg_ess, ex_intro/ qed.
32
33 lemma cpx_delta: ∀h,I,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 →
34                  ⬆*[1] V2 ≡ W2 → ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[h] W2.
35 #h * #G #K #V1 #V2 #W2 *
36 /3 width=4 by cpg_delta, cpg_ell, ex_intro/
37 qed.
38
39 lemma cpx_lref: ∀h,I,G,K,V,T,U,i. ⦃G, K⦄ ⊢ #i ⬈[h] T →
40                 ⬆*[1] T ≡ U → ⦃G, K.ⓑ{I}V⦄ ⊢ #⫯i ⬈[h] U.
41 #h #I #G #K #V #T #U #i *
42 /3 width=4 by cpg_lref, ex_intro/
43 qed.
44
45 lemma cpx_bind: ∀h,p,I,G,L,V1,V2,T1,T2.
46                 ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 →
47                 ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] ⓑ{p,I}V2.T2.
48 #h #p #I #G #L #V1 #V2 #T1 #T2 * #cV #HV12 *
49 /3 width=2 by cpg_bind, ex_intro/
50 qed.
51
52 lemma cpx_flat: ∀h,I,G,L,V1,V2,T1,T2.
53                 ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L⦄ ⊢ T1 ⬈[h] T2 →
54                 ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ⬈[h] ⓕ{I}V2.T2.
55 #h * #G #L #V1 #V2 #T1 #T2 * #cV #HV12 *
56 /3 width=5 by cpg_appl, cpg_cast, ex_intro/
57 qed.
58
59 lemma cpx_zeta: ∀h,G,L,V,T1,T,T2. ⦃G, L.ⓓV⦄ ⊢ T1 ⬈[h] T →
60                 ⬆*[1] T2 ≡ T → ⦃G, L⦄ ⊢ +ⓓV.T1 ⬈[h] T2.
61 #h #G #L #V #T1 #T #T2 *
62 /3 width=4 by cpg_zeta, ex_intro/
63 qed.
64
65 lemma cpx_eps: ∀h,G,L,V,T1,T2. ⦃G, L⦄ ⊢ T1 ⬈[h] T2 → ⦃G, L⦄ ⊢ ⓝV.T1 ⬈[h] T2.
66 #h #G #L #V #T1 #T2 *
67 /3 width=2 by cpg_eps, ex_intro/
68 qed.
69
70 (* Basic_2A1: was: cpx_ct *)
71 lemma cpx_ee: ∀h,G,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L⦄ ⊢ ⓝV1.T ⬈[h] V2.
72 #h #G #L #V1 #V2 #T *
73 /3 width=2 by cpg_ee, ex_intro/
74 qed.
75
76 lemma cpx_beta: ∀h,p,G,L,V1,V2,W1,W2,T1,T2.
77                 ⦃G, L⦄ ⊢ V1 ⬈[h] V2 → ⦃G, L⦄ ⊢ W1 ⬈[h] W2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ⬈[h] T2 →
78                 ⦃G, L⦄ ⊢ ⓐV1.ⓛ{p}W1.T1 ⬈[h] ⓓ{p}ⓝW2.V2.T2.
79 #h #p #G #L #V1 #V2 #W1 #W2 #T1 #T2 * #cV #HV12 * #cW #HW12 * 
80 /3 width=2 by cpg_beta, ex_intro/
81 qed.
82
83 lemma cpx_theta: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2.
84                  ⦃G, L⦄ ⊢ V1 ⬈[h] V → ⬆*[1] V ≡ V2 → ⦃G, L⦄ ⊢ W1 ⬈[h] W2 →
85                  ⦃G, L.ⓓW1⦄ ⊢ T1 ⬈[h] T2 →
86                  ⦃G, L⦄ ⊢ ⓐV1.ⓓ{p}W1.T1 ⬈[h] ⓓ{p}W2.ⓐV2.T2.
87 #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 * #cV #HV1 #HV2 * #cW #HW12 * 
88 /3 width=4 by cpg_theta, ex_intro/
89 qed.
90
91 (* Basic_2A1: includes: cpx_atom *)
92 lemma cpx_refl: ∀h,G,L. reflexive … (cpx h G L).
93 /3 width=2 by cpg_refl, ex_intro/ qed.
94
95 (* Advanced properties ******************************************************)
96
97 lemma cpx_pair_sn: ∀h,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 →
98                    ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ⬈[h] ②{I}V2.T.
99 #h * /2 width=2 by cpx_flat, cpx_bind/
100 qed.
101
102 (* Basic inversion lemmas ***************************************************)
103
104 lemma cpx_inv_atom1: ∀h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ⬈[h] T2 →
105                      ∨∨ T2 = ⓪{J}
106                       | ∃∃s. T2 = ⋆(next h s) & J = Sort s
107                       | ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2 &
108                                      L = K.ⓑ{I}V1 & J = LRef 0
109                       | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2 &
110                                      L = K.ⓑ{I}V & J = LRef (⫯i).
111 #h #J #G #L #T2 * #c #H elim (cpg_inv_atom1 … H) -H *
112 /4 width=9 by or4_intro0, or4_intro1, or4_intro2, or4_intro3, ex4_5_intro, ex4_4_intro, ex2_intro, ex_intro/
113 qed-.
114
115 lemma cpx_inv_sort1: ∀h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ⬈[h] T2 →
116                      T2 = ⋆s ∨ T2 = ⋆(next h s).
117 #h #G #L #T2 #s * #c #H elim (cpg_inv_sort1 … H) -H *
118 /2 width=1 by or_introl, or_intror/
119 qed-.
120
121 lemma cpx_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ⬈[h] T2 →
122                      T2 = #0 ∨
123                      ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2 &
124                                   L = K.ⓑ{I}V1.
125 #h #G #L #T2 * #c #H elim (cpg_inv_zero1 … H) -H *
126 /4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
127 qed-.
128
129 lemma cpx_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[h] T2 →
130                      T2 = #(⫯i) ∨
131                      ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
132 #h #G #L #T2 #i * #c #H elim (cpg_inv_lref1 … H) -H *
133 /4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
134 qed-.
135
136 lemma cpx_inv_gref1: ∀h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ⬈[h] T2 → T2 = §l.
137 #h #G #L #T2 #l * #c #H elim (cpg_inv_gref1 … H) -H //
138 qed-.
139
140 lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] U2 → (
141                      ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 &
142                               U2 = ⓑ{p,I}V2.T2
143                      ) ∨
144                      ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T &
145                           p = true & I = Abbr.
146 #h #p #I #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_bind1 … H) -H *
147 /4 width=5 by ex4_intro, ex3_2_intro, ex_intro, or_introl, or_intror/
148 qed-.
149
150 lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[h] U2 → (
151                      ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T2 &
152                               U2 = ⓓ{p}V2.T2
153                      ) ∨
154                      ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T & p = true.
155 #h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abbr1 … H) -H *
156 /4 width=5 by ex3_2_intro, ex3_intro, ex_intro, or_introl, or_intror/
157 qed-.
158
159 lemma cpx_inv_abst1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓛ{p}V1.T1 ⬈[h] U2 →
160                      ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓛV1⦄ ⊢ T1 ⬈[h] T2 &
161                               U2 = ⓛ{p}V2.T2.
162 #h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abst1 … H) -H
163 /3 width=5 by ex3_2_intro, ex_intro/
164 qed-.
165
166 lemma cpx_inv_appl1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓐ V1.U1 ⬈[h] U2 →
167                      ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L⦄ ⊢ U1 ⬈[h] T2 &
168                                  U2 = ⓐV2.T2
169                       | ∃∃p,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L⦄ ⊢ W1 ⬈[h] W2 &
170                                             ⦃G, L.ⓛW1⦄ ⊢ T1 ⬈[h] T2 &
171                                             U1 = ⓛ{p}W1.T1 & U2 = ⓓ{p}ⓝW2.V2.T2
172                       | ∃∃p,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V & ⬆*[1] V ≡ V2 &
173                                               ⦃G, L⦄ ⊢ W1 ⬈[h] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ⬈[h] T2 &
174                                               U1 = ⓓ{p}W1.T1 & U2 = ⓓ{p}W2.ⓐV2.T2.
175 #h #G #L #V1 #U1 #U2 * #c #H elim (cpg_inv_appl1 … H) -H *
176 /4 width=13 by or3_intro0, or3_intro1, or3_intro2, ex6_7_intro, ex5_6_intro, ex3_2_intro, ex_intro/
177 qed-.
178
179 lemma cpx_inv_cast1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝV1.U1 ⬈[h] U2 →
180                      ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L⦄ ⊢ U1 ⬈[h] T2 &
181                                  U2 = ⓝV2.T2
182                       | ⦃G, L⦄ ⊢ U1 ⬈[h] U2
183                       | ⦃G, L⦄ ⊢ V1 ⬈[h] U2.
184 #h #G #L #V1 #U1 #U2 * #c #H elim (cpg_inv_cast1 … H) -H *
185 /4 width=5 by or3_intro0, or3_intro1, or3_intro2, ex3_2_intro, ex_intro/
186 qed-.
187
188 (* Advanced inversion lemmas ************************************************)
189
190 lemma cpx_inv_flat1: ∀h,I,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓕ{I}V1.U1 ⬈[h] U2 →
191                      ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L⦄ ⊢ U1 ⬈[h] T2 &
192                                  U2 = ⓕ{I}V2.T2
193                       | (⦃G, L⦄ ⊢ U1 ⬈[h] U2 ∧ I = Cast)
194                       | (⦃G, L⦄ ⊢ V1 ⬈[h] U2 ∧ I = Cast)
195                       | ∃∃p,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L⦄ ⊢ W1 ⬈[h] W2 &
196                                             ⦃G, L.ⓛW1⦄ ⊢ T1 ⬈[h] T2 &
197                                             U1 = ⓛ{p}W1.T1 &
198                                             U2 = ⓓ{p}ⓝW2.V2.T2 & I = Appl
199                       | ∃∃p,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V & ⬆*[1] V ≡ V2 &
200                                               ⦃G, L⦄ ⊢ W1 ⬈[h] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ⬈[h] T2 &
201                                               U1 = ⓓ{p}W1.T1 &
202                                               U2 = ⓓ{p}W2.ⓐV2.T2 & I = Appl.
203 #h * #G #L #V1 #U1 #U2 #H
204 [ elim (cpx_inv_appl1 … H) -H *
205   /3 width=14 by or5_intro0, or5_intro3, or5_intro4, ex7_7_intro, ex6_6_intro, ex3_2_intro/
206 | elim (cpx_inv_cast1 … H) -H [ * ]
207   /3 width=14 by or5_intro0, or5_intro1, or5_intro2, ex3_2_intro, conj/
208
209 qed-.
210
211 (* Basic forward lemmas *****************************************************)
212
213 lemma cpx_fwd_bind1_minus: ∀h,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ -ⓑ{I}V1.T1 ⬈[h] T → ∀p.
214                            ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] ⓑ{p,I}V2.T2 &
215                                     T = -ⓑ{I}V2.T2.
216 #h #I #G #L #V1 #T1 #T * #c #H #p elim (cpg_fwd_bind1_minus … H p) -H
217 /3 width=4 by ex2_2_intro, ex_intro/
218 qed-.