]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpr.ma
syntactic components detached from basic_2 become static_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / lpr.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predsn_4.ma".
16 include "static_2/relocation/lex.ma".
17 include "basic_2/rt_transition/cpr_ext.ma".
18
19 (* PARALLEL R-TRANSITION FOR FULL LOCAL ENVIRONMENTS ************************)
20
21 definition lpr (h) (G): relation lenv ≝
22                         lex (λL. cpm h G L 0).
23
24 interpretation
25    "parallel rt-transition (full local environment)"
26    'PRedSn h G L1 L2 = (lpr h G L1 L2).
27
28 (* Basic properties *********************************************************)
29
30 lemma lpr_bind (h) (G): ∀K1,K2. ⦃G, K1⦄ ⊢ ➡[h] K2 →
31                         ∀I1,I2. ⦃G, K1⦄ ⊢ I1 ➡[h] I2 → ⦃G, K1.ⓘ{I1}⦄ ⊢ ➡[h] K2.ⓘ{I2}.
32 /2 width=1 by lex_bind/ qed.
33
34 (* Note: lemma 250 *)
35 lemma lpr_refl (h) (G): reflexive … (lpr h G).
36 /2 width=1 by lex_refl/ qed.
37
38 (* Advanced properties ******************************************************)
39
40 lemma lpr_bind_refl_dx (h) (G): ∀K1,K2. ⦃G, K1⦄ ⊢ ➡[h] K2 →
41                                 ∀I. ⦃G, K1.ⓘ{I}⦄ ⊢ ➡[h] K2.ⓘ{I}.
42 /2 width=1 by lex_bind_refl_dx/ qed.
43
44 lemma lpr_pair (h) (G): ∀K1,K2,V1,V2. ⦃G, K1⦄ ⊢ ➡[h] K2 → ⦃G, K1⦄ ⊢ V1 ➡[h] V2 →
45                         ∀I. ⦃G, K1.ⓑ{I}V1⦄ ⊢ ➡[h] K2.ⓑ{I}V2.
46 /2 width=1 by lex_pair/ qed.
47
48 (* Basic inversion lemmas ***************************************************)
49
50 (* Basic_2A1: was: lpr_inv_atom1 *)
51 (* Basic_1: includes: wcpr0_gen_sort *)
52 lemma lpr_inv_atom_sn (h) (G): ∀L2. ⦃G, ⋆⦄ ⊢ ➡[h] L2 → L2 = ⋆.
53 /2 width=2 by lex_inv_atom_sn/ qed-.
54
55 lemma lpr_inv_bind_sn (h) (G): ∀I1,L2,K1. ⦃G, K1.ⓘ{I1}⦄ ⊢ ➡[h] L2 →
56                                ∃∃I2,K2. ⦃G, K1⦄ ⊢ ➡[h] K2 & ⦃G, K1⦄ ⊢ I1 ➡[h] I2 &
57                                         L2 = K2.ⓘ{I2}.
58 /2 width=1 by lex_inv_bind_sn/ qed-.
59
60 (* Basic_2A1: was: lpr_inv_atom2 *)
61 lemma lpr_inv_atom_dx (h) (G): ∀L1. ⦃G, L1⦄ ⊢ ➡[h] ⋆ → L1 = ⋆.
62 /2 width=2 by lex_inv_atom_dx/ qed-.
63
64 lemma lpr_inv_bind_dx (h) (G): ∀I2,L1,K2. ⦃G, L1⦄ ⊢ ➡[h] K2.ⓘ{I2} →
65                                ∃∃I1,K1. ⦃G, K1⦄ ⊢ ➡[h] K2 & ⦃G, K1⦄ ⊢ I1 ➡[h] I2 &
66                                         L1 = K1.ⓘ{I1}.
67 /2 width=1 by lex_inv_bind_dx/ qed-.
68
69 (* Advanced inversion lemmas ************************************************)
70
71 lemma lpr_inv_unit_sn (h) (G): ∀I,L2,K1. ⦃G, K1.ⓤ{I}⦄ ⊢ ➡[h] L2 →
72                                ∃∃K2. ⦃G, K1⦄ ⊢ ➡[h] K2 & L2 = K2.ⓤ{I}.
73 /2 width=1 by lex_inv_unit_sn/ qed-.
74
75 (* Basic_2A1: was: lpr_inv_pair1 *)
76 (* Basic_1: includes: wcpr0_gen_head *)
77 lemma lpr_inv_pair_sn (h) (G): ∀I,L2,K1,V1. ⦃G, K1.ⓑ{I}V1⦄ ⊢ ➡[h] L2 →
78                                ∃∃K2,V2. ⦃G, K1⦄ ⊢ ➡[h] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2 &
79                                         L2 = K2.ⓑ{I}V2.
80 /2 width=1 by lex_inv_pair_sn/ qed-.
81
82 lemma lpr_inv_unit_dx (h) (G): ∀I,L1,K2. ⦃G, L1⦄ ⊢ ➡[h] K2.ⓤ{I} →
83                                ∃∃K1. ⦃G, K1⦄ ⊢ ➡[h] K2 & L1 = K1.ⓤ{I}.
84 /2 width=1 by lex_inv_unit_dx/ qed-.
85
86 (* Basic_2A1: was: lpr_inv_pair2 *)
87 lemma lpr_inv_pair_dx (h) (G): ∀I,L1,K2,V2. ⦃G, L1⦄ ⊢ ➡[h] K2.ⓑ{I}V2 →
88                                ∃∃K1,V1. ⦃G, K1⦄ ⊢ ➡[h] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2 &
89                                         L1 = K1.ⓑ{I}V1.
90 /2 width=1 by lex_inv_pair_dx/ qed-.
91
92 lemma lpr_inv_pair (h) (G): ∀I1,I2,L1,L2,V1,V2. ⦃G, L1.ⓑ{I1}V1⦄ ⊢ ➡[h] L2.ⓑ{I2}V2 →
93                             ∧∧ ⦃G, L1⦄ ⊢ ➡[h] L2 & ⦃G, L1⦄ ⊢ V1 ➡[h] V2 & I1 = I2.
94 /2 width=1 by lex_inv_pair/ qed-.
95
96 (* Basic_1: removed theorems 3: wcpr0_getl wcpr0_getl_back
97                                 pr0_subst1_back
98 *)