]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpx.ma
milestone update in basic_2, update in ground and static_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / lpx.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predtysn_3.ma".
16 include "static_2/relocation/lex.ma".
17 include "basic_2/rt_transition/cpx_ext.ma".
18
19 (* EXTENDED PARALLEL RT-TRANSITION FOR FULL LOCAL ENVIRONMENTS **************)
20
21 definition lpx (G): relation lenv ≝ lex (cpx G).
22
23 interpretation
24   "extended parallel rt-transition on all entries (local environment)"
25   'PRedTySn G L1 L2 = (lpx G L1 L2).
26
27 (* Basic properties *********************************************************)
28
29 lemma lpx_bind (G):
30       ∀K1,K2. ❪G,K1❫ ⊢ ⬈ K2 → ∀I1,I2. ❪G,K1❫ ⊢ I1 ⬈ I2 →
31       ❪G,K1.ⓘ[I1]❫ ⊢ ⬈ K2.ⓘ[I2].
32 /2 width=1 by lex_bind/ qed.
33
34 lemma lpx_refl (G): reflexive … (lpx G).
35 /2 width=1 by lex_refl/ qed.
36
37 (* Advanced properties ******************************************************)
38
39 lemma lpx_bind_refl_dx (G):
40       ∀K1,K2. ❪G,K1❫ ⊢ ⬈ K2 →
41       ∀I. ❪G,K1.ⓘ[I]❫ ⊢ ⬈ K2.ⓘ[I].
42 /2 width=1 by lex_bind_refl_dx/ qed.
43
44 lemma lpx_pair (G):
45       ∀K1,K2. ❪G,K1❫ ⊢ ⬈ K2 → ∀V1,V2. ❪G,K1❫ ⊢ V1 ⬈ V2 →
46       ∀I.❪G,K1.ⓑ[I]V1❫ ⊢ ⬈ K2.ⓑ[I]V2.
47 /2 width=1 by lex_pair/ qed.
48
49 (* Basic inversion lemmas ***************************************************)
50
51 (* Basic_2A1: was: lpx_inv_atom1 *)
52 lemma lpx_inv_atom_sn (G):
53       ∀L2. ❪G,⋆❫ ⊢ ⬈ L2 → L2 = ⋆.
54 /2 width=2 by lex_inv_atom_sn/ qed-.
55
56 lemma lpx_inv_bind_sn (G):
57       ∀I1,L2,K1. ❪G,K1.ⓘ[I1]❫ ⊢ ⬈ L2 →
58       ∃∃I2,K2. ❪G,K1❫ ⊢ ⬈ K2 & ❪G,K1❫ ⊢ I1 ⬈ I2 & L2 = K2.ⓘ[I2].
59 /2 width=1 by lex_inv_bind_sn/ qed-.
60
61 (* Basic_2A1: was: lpx_inv_atom2 *)
62 lemma lpx_inv_atom_dx (G):
63       ∀L1. ❪G,L1❫ ⊢ ⬈ ⋆ → L1 = ⋆.
64 /2 width=2 by lex_inv_atom_dx/ qed-.
65
66 lemma lpx_inv_bind_dx (G):
67       ∀I2,L1,K2. ❪G,L1❫ ⊢ ⬈ K2.ⓘ[I2] →
68       ∃∃I1,K1. ❪G,K1❫ ⊢ ⬈ K2 & ❪G,K1❫ ⊢ I1 ⬈ I2 & L1 = K1.ⓘ[I1].
69 /2 width=1 by lex_inv_bind_dx/ qed-.
70
71 (* Advanced inversion lemmas ************************************************)
72
73 lemma lpx_inv_unit_sn (G):
74       ∀I,L2,K1. ❪G,K1.ⓤ[I]❫ ⊢ ⬈ L2 →
75       ∃∃K2. ❪G,K1❫ ⊢ ⬈ K2 & L2 = K2.ⓤ[I].
76 /2 width=1 by lex_inv_unit_sn/ qed-.
77
78 (* Basic_2A1: was: lpx_inv_pair1 *)
79 lemma lpx_inv_pair_sn (G):
80       ∀I,L2,K1,V1. ❪G,K1.ⓑ[I]V1❫ ⊢ ⬈ L2 →
81       ∃∃K2,V2. ❪G,K1❫ ⊢ ⬈ K2 & ❪G,K1❫ ⊢ V1 ⬈ V2 & L2 = K2.ⓑ[I]V2.
82 /2 width=1 by lex_inv_pair_sn/ qed-.
83
84 lemma lpx_inv_unit_dx (G):
85       ∀I,L1,K2. ❪G,L1❫ ⊢ ⬈ K2.ⓤ[I] →
86       ∃∃K1. ❪G,K1❫ ⊢ ⬈ K2 & L1 = K1.ⓤ[I].
87 /2 width=1 by lex_inv_unit_dx/ qed-.
88
89 (* Basic_2A1: was: lpx_inv_pair2 *)
90 lemma lpx_inv_pair_dx (G):
91       ∀I,L1,K2,V2. ❪G,L1❫ ⊢ ⬈ K2.ⓑ[I]V2 →
92       ∃∃K1,V1. ❪G,K1❫ ⊢ ⬈ K2 & ❪G,K1❫ ⊢ V1 ⬈ V2 & L1 = K1.ⓑ[I]V1.
93 /2 width=1 by lex_inv_pair_dx/ qed-.
94
95 lemma lpx_inv_pair (G):
96       ∀I1,I2,L1,L2,V1,V2. ❪G,L1.ⓑ[I1]V1❫ ⊢ ⬈ L2.ⓑ[I2]V2 →
97       ∧∧ ❪G,L1❫ ⊢ ⬈ L2 & ❪G,L1❫ ⊢ V1 ⬈ V2 & I1 = I2.
98 /2 width=1 by lex_inv_pair/ qed-.