]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpx.ma
syntactic components detached from basic_2 become static_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / lpx.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predtysn_4.ma".
16 include "static_2/relocation/lex.ma".
17 include "basic_2/rt_transition/cpx_ext.ma".
18
19 (* UNBOUND PARALLEL RT-TRANSITION FOR FULL LOCAL ENVIRONMENTS ***************)
20
21 definition lpx (h) (G): relation lenv ≝
22                         lex (cpx h G).
23
24 interpretation
25    "unbound parallel rt-transition on all entries (local environment)"
26    'PRedTySn h G L1 L2 = (lpx h G L1 L2).
27
28 (* Basic properties *********************************************************)
29
30 lemma lpx_bind (h) (G): ∀K1,K2. ⦃G, K1⦄ ⊢ ⬈[h] K2 →
31                         ∀I1,I2. ⦃G, K1⦄ ⊢ I1 ⬈[h] I2 → ⦃G, K1.ⓘ{I1}⦄ ⊢ ⬈[h] K2.ⓘ{I2}.
32 /2 width=1 by lex_bind/ qed.
33
34 lemma lpx_refl (h) (G): reflexive … (lpx h G).
35 /2 width=1 by lex_refl/ qed.
36
37 (* Advanced properties ******************************************************)
38
39 lemma lpx_bind_refl_dx (h) (G): ∀K1,K2. ⦃G, K1⦄ ⊢ ⬈[h] K2 →
40                                 ∀I. ⦃G, K1.ⓘ{I}⦄ ⊢ ⬈[h] K2.ⓘ{I}.
41 /2 width=1 by lex_bind_refl_dx/ qed.
42
43 lemma lpx_pair (h) (G): ∀K1,K2. ⦃G, K1⦄ ⊢ ⬈[h] K2 → ∀V1,V2. ⦃G, K1⦄ ⊢ V1 ⬈[h] V2 →
44                         ∀I.⦃G, K1.ⓑ{I}V1⦄ ⊢ ⬈[h] K2.ⓑ{I}V2.
45 /2 width=1 by lex_pair/ qed.
46
47 (* Basic inversion lemmas ***************************************************)
48
49 (* Basic_2A1: was: lpx_inv_atom1 *)
50 lemma lpx_inv_atom_sn (h) (G): ∀L2. ⦃G, ⋆⦄ ⊢ ⬈[h] L2 → L2 = ⋆.
51 /2 width=2 by lex_inv_atom_sn/ qed-.
52
53 lemma lpx_inv_bind_sn (h) (G): ∀I1,L2,K1. ⦃G, K1.ⓘ{I1}⦄ ⊢ ⬈[h] L2 →
54                                ∃∃I2,K2. ⦃G, K1⦄ ⊢ ⬈[h] K2 & ⦃G, K1⦄ ⊢ I1 ⬈[h] I2 &
55                                         L2 = K2.ⓘ{I2}.
56 /2 width=1 by lex_inv_bind_sn/ qed-.
57
58 (* Basic_2A1: was: lpx_inv_atom2 *)
59 lemma lpx_inv_atom_dx: ∀h,G,L1. ⦃G, L1⦄ ⊢ ⬈[h] ⋆ → L1 = ⋆.
60 /2 width=2 by lex_inv_atom_dx/ qed-.
61
62 lemma lpx_inv_bind_dx (h) (G): ∀I2,L1,K2. ⦃G, L1⦄ ⊢ ⬈[h] K2.ⓘ{I2} →
63                                ∃∃I1,K1. ⦃G, K1⦄ ⊢ ⬈[h] K2 & ⦃G, K1⦄ ⊢ I1 ⬈[h] I2 &
64                                         L1 = K1.ⓘ{I1}.
65 /2 width=1 by lex_inv_bind_dx/ qed-.
66
67 (* Advanced inversion lemmas ************************************************)
68
69 lemma lpx_inv_unit_sn (h) (G): ∀I,L2,K1. ⦃G, K1.ⓤ{I}⦄ ⊢ ⬈[h] L2 →
70                                ∃∃K2. ⦃G, K1⦄ ⊢ ⬈[h] K2 & L2 = K2.ⓤ{I}.
71 /2 width=1 by lex_inv_unit_sn/ qed-.
72
73 (* Basic_2A1: was: lpx_inv_pair1 *)
74 lemma lpx_inv_pair_sn (h) (G): ∀I,L2,K1,V1. ⦃G, K1.ⓑ{I}V1⦄ ⊢ ⬈[h] L2 →
75                                ∃∃K2,V2. ⦃G, K1⦄ ⊢ ⬈[h] K2 & ⦃G, K1⦄ ⊢ V1 ⬈[h] V2 &
76                                         L2 = K2.ⓑ{I}V2.
77 /2 width=1 by lex_inv_pair_sn/ qed-.
78
79 lemma lpx_inv_unit_dx (h) (G): ∀I,L1,K2. ⦃G, L1⦄ ⊢ ⬈[h] K2.ⓤ{I} →
80                                ∃∃K1. ⦃G, K1⦄ ⊢ ⬈[h] K2 & L1 = K1.ⓤ{I}.
81 /2 width=1 by lex_inv_unit_dx/ qed-.
82
83 (* Basic_2A1: was: lpx_inv_pair2 *)
84 lemma lpx_inv_pair_dx (h) (G): ∀I,L1,K2,V2. ⦃G, L1⦄ ⊢ ⬈[h] K2.ⓑ{I}V2 →
85                                ∃∃K1,V1. ⦃G, K1⦄ ⊢ ⬈[h] K2 & ⦃G, K1⦄ ⊢ V1 ⬈[h] V2 &
86                                         L1 = K1.ⓑ{I}V1.
87 /2 width=1 by lex_inv_pair_dx/ qed-.
88
89 lemma lpx_inv_pair (h) (G): ∀I1,I2,L1,L2,V1,V2. ⦃G, L1.ⓑ{I1}V1⦄ ⊢ ⬈[h] L2.ⓑ{I2}V2 →
90                             ∧∧ ⦃G, L1⦄ ⊢ ⬈[h] L2 & ⦃G, L1⦄ ⊢ V1 ⬈[h] V2 & I1 = I2.
91 /2 width=1 by lex_inv_pair/ qed-.