]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpx.ma
- lpx and lpxs restored to prove equivalene between lfpxs and lpxs + lfeq
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_transition / lpx.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/predtysn_4.ma".
16 include "basic_2/relocation/lex.ma".
17 include "basic_2/rt_transition/cpx.ma".
18
19 (* UNCOUNTED PARALLEL RT-TRANSITION FOR LOCAL ENVIRONMENTS ******************)
20
21 definition lpx: sh → genv → relation lenv ≝
22                 λh,G. lex (cpx h G).
23
24 interpretation
25    "uncounted parallel rt-transition (local environment)"
26    'PRedTySn h G L1 L2 = (lpx h G L1 L2).
27
28 (* Basic properties *********************************************************)
29
30 (*
31 lemma lpx_pair: ∀h,g,I,G,K1,K2,V1,V2. ⦃G, K1⦄ ⊢ ⬈[h] K2 → ⦃G, K1⦄ ⊢ V1 ⬈[h] V2 →
32                 ⦃G, K1.ⓑ{I}V1⦄ ⊢ ⬈[h] K2.ⓑ{I}V2.
33 /2 width=1 by lpx_sn_pair/ qed.
34 *)
35
36 lemma lpx_refl: ∀h,G. reflexive … (lpx h G).
37 /2 width=1 by lex_refl/ qed.
38
39 (* Basic inversion lemmas ***************************************************)
40
41 (* Basic_2A1: was: lpx_inv_atom1 *)
42 lemma lpx_inv_atom_sn: ∀h,G,L2. ⦃G, ⋆⦄ ⊢ ⬈[h] L2 → L2 = ⋆.
43 /2 width=2 by lex_inv_atom_sn/ qed-.
44
45 (* Basic_2A1: was: lpx_inv_pair1 *)
46 lemma lpx_inv_pair_sn: ∀h,I,G,L2,K1,V1. ⦃G, K1.ⓑ{I}V1⦄ ⊢ ⬈[h] L2 →
47                        ∃∃K2,V2. ⦃G, K1⦄ ⊢ ⬈[h] K2 & ⦃G, K1⦄ ⊢ V1 ⬈[h] V2 &
48                                 L2 = K2.ⓑ{I}V2.
49 /2 width=1 by lex_inv_pair_sn/ qed-.
50
51 (* Basic_2A1: was: lpx_inv_atom2 *)
52 lemma lpx_inv_atom_dx: ∀h,G,L1.  ⦃G, L1⦄ ⊢ ⬈[h] ⋆ → L1 = ⋆.
53 /2 width=2 by lex_inv_atom_dx/ qed-.
54
55 (* Basic_2A1: was: lpx_inv_pair2 *)
56 lemma lpx_inv_pair2_dx: ∀h,I,G,L1,K2,V2.  ⦃G, L1⦄ ⊢ ⬈[h] K2.ⓑ{I}V2 →
57                         ∃∃K1,V1. ⦃G, K1⦄ ⊢ ⬈[h] K2 & ⦃G, K1⦄ ⊢ V1 ⬈[h] V2 &
58                                  L1 = K1.ⓑ{I}V1.
59 /2 width=1 by lex_inv_pair_dx/ qed-.
60
61 (* Advanced inversion lemmas ************************************************)
62
63 lemma lpx_inv_pair: ∀h,I1,I2,G,L1,L2,V1,V2.  ⦃G, L1.ⓑ{I1}V1⦄ ⊢ ⬈[h] L2.ⓑ{I2}V2 →
64                     ∧∧ ⦃G, L1⦄ ⊢ ⬈[h] L2 & ⦃G, L1⦄ ⊢ V1 ⬈[h] V2 & I1 = I2.
65 /2 width=1 by lex_inv_pair/ qed-.