]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfdeq.ma
f55500bd119b0318715fc5adb76a6ce334909ef0
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfdeq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/stareqsn_5.ma".
16 include "basic_2/syntax/tdeq_ext.ma".
17 include "basic_2/static/lfxs.ma".
18
19 (* DEGREE-BASED EQUIVALENCE FOR LOCAL ENVIRONMENTS ON REFERRED ENTRIES ******)
20
21 definition lfdeq: ∀h. sd h → relation3 term lenv lenv ≝
22                   λh,o. lfxs (cdeq h o).
23
24 interpretation
25    "degree-based equivalence on referred entries (local environment)"
26    'StarEqSn h o T L1 L2 = (lfdeq h o T L1 L2).
27
28 interpretation
29    "degree-based ranged equivalence (local environment)"
30    'StarEqSn h o f L1 L2 = (lexs (cdeq_ext h o) cfull f L1 L2).
31
32 (* Basic properties ***********************************************************)
33
34 lemma frees_tdeq_conf_lexs: ∀h,o,f,L1,T1. L1 ⊢ 𝐅*⦃T1⦄ ≡ f → ∀T2. T1 ≛[h, o] T2 →
35                             ∀L2. L1 ≛[h, o, f] L2 → L2 ⊢ 𝐅*⦃T2⦄ ≡ f.
36 #h #o #f #L1 #T1 #H elim H -f -L1 -T1
37 [ #f #L1 #s1 #Hf #X #H1 #L2 #_
38   elim (tdeq_inv_sort1 … H1) -H1 #s2 #d #_ #_ #H destruct
39   /2 width=3 by frees_sort/
40 | #f #i #Hf #X #H1
41   >(tdeq_inv_lref1 … H1) -X #Y #H2
42   >(lexs_inv_atom1 … H2) -Y
43   /2 width=1 by frees_atom/
44 | #f #I #L1 #V1 #_ #IH #X #H1
45   >(tdeq_inv_lref1 … H1) -X #Y #H2
46   elim (lexs_inv_next1 … H2) -H2 #Z #L2 #HL12 #HZ #H destruct
47   elim (ext2_inv_pair_sn … HZ) -HZ #V2 #HV12 #H destruct
48   /3 width=1 by frees_pair/
49 | #f #I #L1 #Hf #X #H1
50   >(tdeq_inv_lref1 … H1) -X #Y #H2
51   elim (lexs_inv_next1 … H2) -H2 #Z #L2 #_ #HZ #H destruct
52   >(ext2_inv_unit_sn … HZ) -Z /2 width=1 by frees_unit/
53 | #f #I #L1 #i #_ #IH #X #H1
54   >(tdeq_inv_lref1 … H1) -X #Y #H2
55   elim (lexs_inv_push1 … H2) -H2 #J #L2 #HL12 #_ #H destruct
56   /3 width=1 by frees_lref/
57 | #f #L1 #l #Hf #X #H1 #L2 #_
58   >(tdeq_inv_gref1 … H1) -X /2 width=1 by frees_gref/
59 | #f1V #f1T #f1 #p #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #X #H1
60   elim (tdeq_inv_pair1 … H1) -H1 #V2 #T2 #HV12 #HT12 #H1 #L2 #HL12 destruct
61   /6 width=5 by frees_bind, lexs_inv_tl, ext2_pair, sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn/
62 | #f1V #f1T #f1 #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #X #H1
63   elim (tdeq_inv_pair1 … H1) -H1 #V2 #T2 #HV12 #HT12 #H1 #L2 #HL12 destruct
64   /5 width=5 by frees_flat, sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn/
65 ]
66 qed-.
67
68 lemma frees_tdeq_conf: ∀h,o,f,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f →
69                        ∀T2. T1 ≛[h, o] T2 → L ⊢ 𝐅*⦃T2⦄ ≡ f.
70 /4 width=7 by frees_tdeq_conf_lexs, lexs_refl, ext2_refl/ qed-.
71
72 lemma frees_lexs_conf: ∀h,o,f,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f →
73                        ∀L2. L1 ≛[h, o, f] L2 → L2 ⊢ 𝐅*⦃T⦄ ≡ f.
74 /2 width=7 by frees_tdeq_conf_lexs, tdeq_refl/ qed-.
75
76 lemma frees_lfdeq_conf_lexs: ∀h,o. lexs_frees_confluent (cdeq_ext h o) cfull.
77 /3 width=7 by frees_tdeq_conf_lexs, ex2_intro/ qed-.
78
79 lemma tdeq_lfdeq_conf_sn: ∀h,o. s_r_confluent1 … (cdeq h o) (lfdeq h o).
80 #h #o #L1 #T1 #T2 #HT12 #L2 *
81 /3 width=5 by frees_tdeq_conf, ex2_intro/
82 qed-.
83
84 (* Basic_2A1: uses: lleq_sym *)
85 lemma lfdeq_sym: ∀h,o,T. symmetric … (lfdeq h o T).
86 #h #o #T #L1 #L2 *
87 /4 width=7 by frees_tdeq_conf_lexs, lfxs_sym, tdeq_sym, ex2_intro/
88 qed-.
89
90 lemma lfdeq_atom: ∀h,o,I. ⋆ ≛[h, o, ⓪{I}] ⋆.
91 /2 width=1 by lfxs_atom/ qed.
92
93 (* Basic_2A1: uses: lleq_sort *)
94 lemma lfdeq_sort: ∀h,o,I1,I2,L1,L2,s.
95                   L1 ≛[h, o, ⋆s] L2 → L1.ⓘ{I1} ≛[h, o, ⋆s] L2.ⓘ{I2}.
96 /2 width=1 by lfxs_sort/ qed.
97
98 lemma lfdeq_pair: ∀h,o,I,L1,L2,V1,V2. L1 ≛[h, o, V1] L2 → V1 ≛[h, o] V2 →
99                                       L1.ⓑ{I}V1 ≛[h, o, #0] L2.ⓑ{I}V2.
100 /2 width=1 by lfxs_pair/ qed.
101 (*
102 lemma lfdeq_unit: ∀h,o,f,I,L1,L2. 𝐈⦃f⦄ → L1 ⪤*[cdeq_ext h o, cfull, f] L2 →
103                   L1.ⓤ{I} ≛[h, o, #0] L2.ⓤ{I}.
104 /2 width=3 by lfxs_unit/ qed.
105 *)
106 lemma lfdeq_lref: ∀h,o,I1,I2,L1,L2,i.
107                   L1 ≛[h, o, #i] L2 → L1.ⓘ{I1} ≛[h, o, #⫯i] L2.ⓘ{I2}.
108 /2 width=1 by lfxs_lref/ qed.
109
110 (* Basic_2A1: uses: lleq_gref *)
111 lemma lfdeq_gref: ∀h,o,I1,I2,L1,L2,l.
112                   L1 ≛[h, o, §l] L2 → L1.ⓘ{I1} ≛[h, o, §l] L2.ⓘ{I2}.
113 /2 width=1 by lfxs_gref/ qed.
114
115 lemma lfdeq_bind_repl_dx: ∀h,o,I,I1,L1,L2.∀T:term.
116                           L1.ⓘ{I} ≛[h, o, T] L2.ⓘ{I1} →
117                           ∀I2. I ≛[h, o] I2 →
118                           L1.ⓘ{I} ≛[h, o, T] L2.ⓘ{I2}.
119 /2 width=2 by lfxs_bind_repl_dx/ qed-.
120
121 (* Basic inversion lemmas ***************************************************)
122
123 lemma lfdeq_inv_atom_sn: ∀h,o,Y2. ∀T:term. ⋆ ≛[h, o, T] Y2 → Y2 = ⋆.
124 /2 width=3 by lfxs_inv_atom_sn/ qed-.
125
126 lemma lfdeq_inv_atom_dx: ∀h,o,Y1. ∀T:term. Y1 ≛[h, o, T] ⋆ → Y1 = ⋆.
127 /2 width=3 by lfxs_inv_atom_dx/ qed-.
128 (*
129 lemma lfdeq_inv_zero: ∀h,o,Y1,Y2. Y1 ≛[h, o, #0] Y2 →
130                       ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
131                        | ∃∃I,L1,L2,V1,V2. L1 ≛[h, o, V1] L2 & V1 ≛[h, o] V2 &
132                                           Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2
133                        | ∃∃f,I,L1,L2. 𝐈⦃f⦄ & L1 ⪤*[cdeq_ext h o, cfull, f] L2 &
134                                            Y1 = L1.ⓤ{I} & Y2 = L2.ⓤ{I}.
135 #h #o #Y1 #Y2 #H elim (lfxs_inv_zero … H) -H *
136 /3 width=9 by or3_intro0, or3_intro1, or3_intro2, ex4_5_intro, ex4_4_intro, conj/
137 qed-.
138 *)
139 lemma lfdeq_inv_lref: ∀h,o,Y1,Y2,i. Y1 ≛[h, o, #⫯i] Y2 →
140                       (Y1 = ⋆ ∧ Y2 = ⋆) ∨
141                       ∃∃I1,I2,L1,L2. L1 ≛[h, o, #i] L2 &
142                                      Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
143 /2 width=1 by lfxs_inv_lref/ qed-.
144
145 (* Basic_2A1: uses: lleq_inv_bind lleq_inv_bind_O *)
146 lemma lfdeq_inv_bind: ∀h,o,p,I,L1,L2,V,T. L1 ≛[h, o, ⓑ{p,I}V.T] L2 →
147                       L1 ≛[h, o, V] L2 ∧ L1.ⓑ{I}V ≛[h, o, T] L2.ⓑ{I}V.
148 /2 width=2 by lfxs_inv_bind/ qed-.
149
150 (* Basic_2A1: uses: lleq_inv_flat *)
151 lemma lfdeq_inv_flat: ∀h,o,I,L1,L2,V,T. L1 ≛[h, o, ⓕ{I}V.T] L2 →
152                       L1 ≛[h, o, V] L2 ∧ L1 ≛[h, o, T] L2.
153 /2 width=2 by lfxs_inv_flat/ qed-.
154
155 (* Advanced inversion lemmas ************************************************)
156
157 lemma lfdeq_inv_zero_pair_sn: ∀h,o,I,Y2,L1,V1. L1.ⓑ{I}V1 ≛[h, o, #0] Y2 →
158                               ∃∃L2,V2. L1 ≛[h, o, V1] L2 & V1 ≛[h, o] V2 & Y2 = L2.ⓑ{I}V2.
159 /2 width=1 by lfxs_inv_zero_pair_sn/ qed-.
160
161 lemma lfdeq_inv_zero_pair_dx: ∀h,o,I,Y1,L2,V2. Y1 ≛[h, o, #0] L2.ⓑ{I}V2 →
162                               ∃∃L1,V1. L1 ≛[h, o, V1] L2 & V1 ≛[h, o] V2 & Y1 = L1.ⓑ{I}V1.
163 /2 width=1 by lfxs_inv_zero_pair_dx/ qed-.
164
165 lemma lfdeq_inv_lref_bind_sn: ∀h,o,I1,Y2,L1,i. L1.ⓘ{I1} ≛[h, o, #⫯i] Y2 →
166                               ∃∃I2,L2. L1 ≛[h, o, #i] L2 & Y2 = L2.ⓘ{I2}.
167 /2 width=2 by lfxs_inv_lref_bind_sn/ qed-.
168
169 lemma lfdeq_inv_lref_bind_dx: ∀h,o,I2,Y1,L2,i. Y1 ≛[h, o, #⫯i] L2.ⓘ{I2} →
170                               ∃∃I1,L1. L1 ≛[h, o, #i] L2 & Y1 = L1.ⓘ{I1}.
171 /2 width=2 by lfxs_inv_lref_bind_dx/ qed-.
172
173 (* Basic forward lemmas *****************************************************)
174
175 lemma lfdeq_fwd_zero_pair: ∀h,o,I,K1,K2,V1,V2.
176                            K1.ⓑ{I}V1 ≛[h, o, #0] K2.ⓑ{I}V2 → K1 ≛[h, o, V1] K2.
177 /2 width=3 by lfxs_fwd_zero_pair/ qed-.
178
179 (* Basic_2A1: uses: lleq_fwd_bind_sn lleq_fwd_flat_sn *)
180 lemma lfdeq_fwd_pair_sn: ∀h,o,I,L1,L2,V,T. L1 ≛[h, o, ②{I}V.T] L2 → L1 ≛[h, o, V] L2.
181 /2 width=3 by lfxs_fwd_pair_sn/ qed-.
182
183 (* Basic_2A1: uses: lleq_fwd_bind_dx lleq_fwd_bind_O_dx *)
184 lemma lfdeq_fwd_bind_dx: ∀h,o,p,I,L1,L2,V,T.
185                          L1 ≛[h, o, ⓑ{p,I}V.T] L2 → L1.ⓑ{I}V ≛[h, o, T] L2.ⓑ{I}V.
186 /2 width=2 by lfxs_fwd_bind_dx/ qed-.
187
188 (* Basic_2A1: uses: lleq_fwd_flat_dx *)
189 lemma lfdeq_fwd_flat_dx: ∀h,o,I,L1,L2,V,T. L1 ≛[h, o, ⓕ{I}V.T] L2 → L1 ≛[h, o, T] L2.
190 /2 width=3 by lfxs_fwd_flat_dx/ qed-.
191
192 lemma lfdeq_fwd_dx: ∀h,o,I2,L1,K2. ∀T:term. L1 ≛[h, o, T] K2.ⓘ{I2} →
193                     ∃∃I1,K1. L1 = K1.ⓘ{I1}.
194 /2 width=5 by lfxs_fwd_dx/ qed-.