]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfeq.ma
some renaming and reordering of variables
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfeq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/lazyeq_3.ma".
16 include "basic_2/static/lfxs.ma".
17
18 (* EQUIVALENCE FOR LOCAL ENVIRONMENTS ON REFERRED ENTRIES *******************)
19
20 definition lfeq: relation3 term lenv lenv ≝ lfxs ceq.
21
22 interpretation
23    "equivalence on referred entries (local environment)"
24    'LazyEq T L1 L2 = (lfeq T L1 L2).
25
26 definition lfeq_transitive: predicate (relation3 lenv term term) ≝
27            λR. ∀L2,T1,T2. R L2 T1 T2 → ∀L1. L1 ≡[T1] L2 → R L1 T1 T2.
28
29 (* Basic properties ***********************************************************)
30
31 lemma lfeq_atom: ∀I. ⋆ ≡[⓪{I}] ⋆.
32 /2 width=1 by lfxs_atom/ qed.
33
34 lemma lfeq_sort: ∀I,L1,L2,V1,V2,s.
35                  L1 ≡[⋆s] L2 → L1.ⓑ{I}V1 ≡[⋆s] L2.ⓑ{I}V2.
36 /2 width=1 by lfxs_sort/ qed.
37
38 lemma lfeq_zero: ∀I,L1,L2,V.
39                  L1 ≡[V] L2 → L1.ⓑ{I}V ≡[#0] L2.ⓑ{I}V.
40 /2 width=1 by lfxs_zero/ qed.
41
42 lemma lfeq_lref: ∀I,L1,L2,V1,V2,i.
43                  L1 ≡[#i] L2 → L1.ⓑ{I}V1 ≡[#⫯i] L2.ⓑ{I}V2.
44 /2 width=1 by lfxs_lref/ qed.
45
46 lemma lfeq_gref: ∀I,L1,L2,V1,V2,l.
47                  L1 ≡[§l] L2 → L1.ⓑ{I}V1 ≡[§l] L2.ⓑ{I}V2.
48 /2 width=1 by lfxs_gref/ qed.
49
50 (* Basic inversion lemmas ***************************************************)
51
52 lemma lfeq_inv_atom_sn: ∀I,Y2. ⋆ ≡[⓪{I}] Y2 → Y2 = ⋆.
53 /2 width=3 by lfxs_inv_atom_sn/ qed-.
54
55 lemma lfeq_inv_atom_dx: ∀I,Y1. Y1 ≡[⓪{I}] ⋆ → Y1 = ⋆.
56 /2 width=3 by lfxs_inv_atom_dx/ qed-.
57
58 lemma lfeq_inv_zero: ∀Y1,Y2. Y1 ≡[#0] Y2 →
59                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
60                      ∃∃I,L1,L2,V. L1 ≡[V] L2 &
61                                   Y1 = L1.ⓑ{I}V & Y2 = L2.ⓑ{I}V.
62 #Y1 #Y2 #H elim (lfxs_inv_zero … H) -H *
63 /3 width=7 by ex3_4_intro, or_introl, or_intror, conj/
64 qed-.
65
66 lemma lfeq_inv_lref: ∀Y1,Y2,i. Y1 ≡[#⫯i] Y2 →
67                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
68                      ∃∃I,L1,L2,V1,V2. L1 ≡[#i] L2 &
69                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
70 #Y1 #Y2 #i #H elim (lfxs_inv_lref … H) -H *
71 /3 width=8 by ex3_5_intro, or_introl, or_intror, conj/
72 qed-.
73
74 lemma lfeq_inv_bind: ∀p,I,L1,L2,V,T. L1 ≡[ⓑ{p,I}V.T] L2 →
75                      L1 ≡[V] L2 ∧ L1.ⓑ{I}V ≡[T] L2.ⓑ{I}V.
76 #p #I #L1 #L2 #V #T #H elim (lfxs_inv_bind … H) -H /2 width=3 by conj/
77 qed-.
78
79 lemma lfeq_inv_flat: ∀I,L1,L2,V,T. L1 ≡[ⓕ{I}V.T] L2 →
80                      L1 ≡[V] L2 ∧ L1 ≡[T] L2.
81 #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H /2 width=3 by conj/
82 qed-.
83
84 (* Advanced inversion lemmas ************************************************)
85
86 lemma lfeq_inv_zero_pair_sn: ∀I,Y2,L1,V. L1.ⓑ{I}V ≡[#0] Y2 →
87                              ∃∃L2. L1 ≡[V] L2 & Y2 = L2.ⓑ{I}V.
88 #I #Y2 #L1 #V #H elim (lfxs_inv_zero_pair_sn … H) -H /2 width=3 by ex2_intro/
89 qed-.
90
91 lemma lfeq_inv_zero_pair_dx: ∀I,Y1,L2,V. Y1 ≡[#0] L2.ⓑ{I}V →
92                              ∃∃L1. L1 ≡[V] L2 & Y1 = L1.ⓑ{I}V.
93 #I #Y1 #L2 #V #H elim (lfxs_inv_zero_pair_dx … H) -H
94 #L1 #X #HL12 #HX #H destruct /2 width=3 by ex2_intro/
95 qed-.
96
97 lemma lfeq_inv_lref_pair_sn: ∀I,Y2,L1,V1,i. L1.ⓑ{I}V1 ≡[#⫯i] Y2 →
98                              ∃∃L2,V2. L1 ≡[#i] L2 & Y2 = L2.ⓑ{I}V2.
99 /2 width=2 by lfxs_inv_lref_pair_sn/ qed-.
100
101 lemma lfeq_inv_lref_pair_dx: ∀I,Y1,L2,V2,i. Y1 ≡[#⫯i] L2.ⓑ{I}V2 →
102                              ∃∃L1,V1. L1 ≡[#i] L2 & Y1 = L1.ⓑ{I}V1.
103 /2 width=2 by lfxs_inv_lref_pair_dx/ qed-.
104
105 (* Basic forward lemmas *****************************************************)
106
107 lemma lfeq_fwd_bind_sn: ∀p,I,L1,L2,V,T. L1 ≡[ⓑ{p,I}V.T] L2 → L1 ≡[V] L2.
108 /2 width=4 by lfxs_fwd_bind_sn/ qed-.
109
110 lemma lfeq_fwd_bind_dx: ∀p,I,L1,L2,V,T.
111                         L1 ≡[ⓑ{p,I}V.T] L2 → L1.ⓑ{I}V ≡[T] L2.ⓑ{I}V.
112 /2 width=2 by lfxs_fwd_bind_dx/ qed-.
113
114 lemma lfeq_fwd_flat_sn: ∀I,L1,L2,V,T. L1 ≡[ⓕ{I}V.T] L2 → L1 ≡[V] L2.
115 /2 width=3 by lfxs_fwd_flat_sn/ qed-.
116
117 lemma lfeq_fwd_flat_dx: ∀I,L1,L2,V,T. L1 ≡[ⓕ{I}V.T] L2 → L1 ≡[T] L2.
118 /2 width=3 by lfxs_fwd_flat_dx/ qed-.
119
120 lemma lfeq_fwd_pair_sn: ∀I,L1,L2,V,T. L1 ≡[②{I}V.T] L2 → L1 ≡[V] L2.
121 /2 width=3 by lfxs_fwd_pair_sn/ qed-.
122
123 (* Advanceded forward lemmas with generic extension on referred entries *****)
124
125 lemma lfex_fwd_lfxs_refl: ∀R. (∀L. reflexive … (R L)) →
126                           ∀L1,L2,T. L1 ≡[T] L2 → L1 ⦻*[R, T] L2.
127 /2 width=3 by lfxs_co/ qed-.
128
129 (* Basic_2A1: removed theorems 30: 
130               lleq_ind lleq_inv_bind lleq_inv_flat lleq_fwd_length lleq_fwd_lref
131               lleq_fwd_drop_sn lleq_fwd_drop_dx
132               lleq_fwd_bind_sn lleq_fwd_bind_dx lleq_fwd_flat_sn lleq_fwd_flat_dx
133               lleq_sort lleq_skip lleq_lref lleq_free lleq_gref lleq_bind lleq_flat
134               lleq_refl lleq_Y lleq_sym lleq_ge_up lleq_ge lleq_bind_O llpx_sn_lrefl
135               lleq_trans lleq_canc_sn lleq_canc_dx lleq_nlleq_trans nlleq_lleq_div
136 *)