]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
0e7e900d544cb00861e6c26e5332234921c0cdd0
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/relationstar_4.ma".
16 include "basic_2/syntax/cext2.ma".
17 include "basic_2/relocation/lexs.ma".
18 include "basic_2/static/fle.ma".
19
20 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
21
22 definition lfxs (R) (T): relation lenv ≝
23                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⪤*[cext2 R, cfull, f] L2.
24
25 interpretation "generic extension on referred entries (local environment)"
26    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
27
28 definition R_fle_compatible: predicate (relation3 …) ≝ λRN.
29                              ∀L,T1,T2. RN L T1 T2 → ⦃L, T2⦄ ⊆ ⦃L, T1⦄.
30
31 definition lfxs_fle_compatible: predicate (relation3 …) ≝ λRN.
32                                 ∀L1,L2,T. L1 ⪤*[RN, T] L2 → ⦃L2, T⦄ ⊆ ⦃L1, T⦄.
33
34 definition R_confluent2_lfxs: relation4 (relation3 lenv term term)
35                                         (relation3 lenv term term) … ≝
36                               λR1,R2,RP1,RP2.
37                               ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
38                               ∀L1. L0 ⪤*[RP1, T0] L1 → ∀L2. L0 ⪤*[RP2, T0] L2 →
39                               ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
40
41 definition lfxs_confluent: relation … ≝
42                            λR1,R2. 
43                            ∀K1,K,V1. K1 ⪤*[R1, V1] K → ∀V. R1 K1 V1 V →
44                            ∀K2. K ⪤*[R2, V] K2 → K ⪤*[R2, V1] K2.
45
46 definition lfxs_transitive: relation3 ? (relation3 ?? term) ? ≝
47                             λR1,R2,R3.
48                             ∀K1,K,V1. K1 ⪤*[R1, V1] K →
49                             ∀V. R1 K1 V1 V → ∀V2. R2 K V V2 → R3 K1 V1 V2.
50
51 (* Basic inversion lemmas ***************************************************)
52
53 lemma lfxs_inv_atom_sn: ∀R,Y2,T. ⋆ ⪤*[R, T] Y2 → Y2 = ⋆.
54 #R #Y2 #T * /2 width=4 by lexs_inv_atom1/
55 qed-.
56
57 lemma lfxs_inv_atom_dx: ∀R,Y1,T. Y1 ⪤*[R, T] ⋆ → Y1 = ⋆.
58 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
59 qed-.
60
61 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⪤*[R, ⋆s] Y2 →
62                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
63                       | ∃∃I1,I2,L1,L2. L1 ⪤*[R, ⋆s] L2 &
64                                        Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
65 #R * [ | #Y1 #I1 ] #Y2 #s * #f #H1 #H2
66 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
67 | lapply (frees_inv_sort … H1) -H1 #Hf
68   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
69   elim (lexs_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
70   /5 width=7 by frees_sort, ex3_4_intro, ex2_intro, or_intror/
71 ]
72 qed-.
73
74 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⪤*[R, #0] Y2 →
75                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
76                       | ∃∃I,L1,L2,V1,V2. L1 ⪤*[R, V1] L2 & R L1 V1 V2 &
77                                          Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2
78                       | ∃∃f,I,L1,L2. 𝐈⦃f⦄ & L1 ⪤*[cext2 R, cfull, f] L2 &
79                                      Y1 = L1.ⓤ{I} & Y2 = L2.ⓤ{I}.
80 #R * [ | #Y1 * #I1 [ | #X ] ] #Y2 * #f #H1 #H2
81 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or3_intro0, conj/
82 | elim (frees_inv_unit … H1) -H1 #g #HX #H destruct
83   elim (lexs_inv_next1 … H2) -H2 #I2 #L2 #HL12 #H #H2 destruct
84   >(ext2_inv_unit_sn … H) -H /3 width=8 by or3_intro2, ex4_4_intro/
85 | elim (frees_inv_pair … H1) -H1 #g #Hg #H destruct
86   elim (lexs_inv_next1 … H2) -H2 #Z2 #L2 #HL12 #H
87   elim (ext2_inv_pair_sn … H) -H
88   /4 width=9 by or3_intro1, ex4_5_intro, ex2_intro/
89 ]
90 qed-.
91
92 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⪤*[R, #⫯i] Y2 →
93                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
94                       | ∃∃I1,I2,L1,L2. L1 ⪤*[R, #i] L2 &
95                                        Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
96 #R * [ | #Y1 #I1 ] #Y2 #i * #f #H1 #H2
97 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
98 | elim (frees_inv_lref … H1) -H1 #g #Hg #H destruct
99   elim (lexs_inv_push1 … H2) -H2
100   /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
101 ]
102 qed-.
103
104 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⪤*[R, §l] Y2 →
105                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
106                       | ∃∃I1,I2,L1,L2. L1 ⪤*[R, §l] L2 &
107                                        Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
108 #R * [ | #Y1 #I1 ] #Y2 #l * #f #H1 #H2
109 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
110 | lapply (frees_inv_gref … H1) -H1 #Hf
111   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
112   elim (lexs_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
113   /5 width=7 by frees_gref, ex3_4_intro, ex2_intro, or_intror/
114 ]
115 qed-.
116
117 (* Basic_2A1: uses: llpx_sn_inv_bind llpx_sn_inv_bind_O *)
118 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⪤*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
119                      L1 ⪤*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⪤*[R, T] L2.ⓑ{I}V2.
120 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
121 /6 width=6 by sle_lexs_trans, lexs_inv_tl, ext2_pair, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
122 qed-.
123
124 (* Basic_2A1: uses: llpx_sn_inv_flat *)
125 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ⓕ{I}V.T] L2 →
126                      L1 ⪤*[R, V] L2 ∧ L1 ⪤*[R, T] L2.
127 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
128 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
129 qed-.
130
131 (* Advanced inversion lemmas ************************************************)
132
133 lemma lfxs_inv_sort_bind_sn: ∀R,I1,K1,L2,s. K1.ⓘ{I1} ⪤*[R, ⋆s] L2 →
134                              ∃∃I2,K2. K1 ⪤*[R, ⋆s] K2 & L2 = K2.ⓘ{I2}.
135 #R #I1 #K1 #L2 #s #H elim (lfxs_inv_sort … H) -H *
136 [ #H destruct
137 | #Z1 #I2 #Y1 #K2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
138 ]
139 qed-.
140
141 lemma lfxs_inv_sort_bind_dx: ∀R,I2,K2,L1,s. L1 ⪤*[R, ⋆s] K2.ⓘ{I2} →
142                              ∃∃I1,K1. K1 ⪤*[R, ⋆s] K2 & L1 = K1.ⓘ{I1}.
143 #R #I2 #K2 #L1 #s #H elim (lfxs_inv_sort … H) -H *
144 [ #_ #H destruct
145 | #I1 #Z2 #K1 #Y2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
146 ]
147 qed-.
148
149 lemma lfxs_inv_zero_pair_sn: ∀R,I,L2,K1,V1. K1.ⓑ{I}V1 ⪤*[R, #0] L2 →
150                              ∃∃K2,V2. K1 ⪤*[R, V1] K2 & R K1 V1 V2 &
151                                       L2 = K2.ⓑ{I}V2.
152 #R #I #L2 #K1 #V1 #H elim (lfxs_inv_zero … H) -H *
153 [ #H destruct
154 | #Z #Y1 #K2 #X1 #V2 #HK12 #HV12 #H1 #H2 destruct
155   /2 width=5 by ex3_2_intro/
156 | #f #Z #Y1 #Y2 #_ #_ #H destruct
157 ]
158 qed-.
159
160 lemma lfxs_inv_zero_pair_dx: ∀R,I,L1,K2,V2. L1 ⪤*[R, #0] K2.ⓑ{I}V2 →
161                              ∃∃K1,V1. K1 ⪤*[R, V1] K2 & R K1 V1 V2 &
162                                       L1 = K1.ⓑ{I}V1.
163 #R #I #L1 #K2 #V2 #H elim (lfxs_inv_zero … H) -H *
164 [ #_ #H destruct
165 | #Z #K1 #Y2 #V1 #X2 #HK12 #HV12 #H1 #H2 destruct
166   /2 width=5 by ex3_2_intro/
167 | #f #Z #Y1 #Y2 #_ #_ #_ #H destruct
168 ]
169 qed-.
170
171 lemma lfxs_inv_zero_unit_sn: ∀R,I,K1,L2. K1.ⓤ{I} ⪤*[R, #0] L2 →
172                              ∃∃f,K2. 𝐈⦃f⦄ & K1 ⪤*[cext2 R, cfull, f] K2 &
173                                      L2 = K2.ⓤ{I}.
174 #R #I #K1 #L2 #H elim (lfxs_inv_zero … H) -H *
175 [ #H destruct
176 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #H destruct
177 | #f #Z #Y1 #K2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
178 ]
179 qed-.
180
181 lemma lfxs_inv_zero_unit_dx: ∀R,I,L1,K2. L1 ⪤*[R, #0] K2.ⓤ{I} →
182                              ∃∃f,K1. 𝐈⦃f⦄ & K1 ⪤*[cext2 R, cfull, f] K2 &
183                                      L1 = K1.ⓤ{I}.
184 #R #I #L1 #K2 #H elim (lfxs_inv_zero … H) -H *
185 [ #_ #H destruct
186 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #_ #H destruct
187 | #f #Z #K1 #Y2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
188 ]
189 qed-.
190
191 lemma lfxs_inv_lref_bind_sn: ∀R,I1,K1,L2,i. K1.ⓘ{I1} ⪤*[R, #⫯i] L2 →
192                              ∃∃I2,K2. K1 ⪤*[R, #i] K2 & L2 = K2.ⓘ{I2}.
193 #R #I1 #K1 #L2 #i #H elim (lfxs_inv_lref … H) -H *
194 [ #H destruct
195 | #Z1 #I2 #Y1 #K2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
196 ]
197 qed-.
198
199 lemma lfxs_inv_lref_bind_dx: ∀R,I2,K2,L1,i. L1 ⪤*[R, #⫯i] K2.ⓘ{I2} →
200                              ∃∃I1,K1. K1 ⪤*[R, #i] K2 & L1 = K1.ⓘ{I1}.
201 #R #I2 #K2 #L1 #i #H elim (lfxs_inv_lref … H) -H *
202 [ #_ #H destruct
203 | #I1 #Z2 #K1 #Y2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
204 ]
205 qed-.
206
207 lemma lfxs_inv_gref_bind_sn: ∀R,I1,K1,L2,l. K1.ⓘ{I1} ⪤*[R, §l] L2 →
208                              ∃∃I2,K2. K1 ⪤*[R, §l] K2 & L2 = K2.ⓘ{I2}.
209 #R #I1 #K1 #L2 #l #H elim (lfxs_inv_gref … H) -H *
210 [ #H destruct
211 | #Z1 #I2 #Y1 #K2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
212 ]
213 qed-.
214
215 lemma lfxs_inv_gref_bind_dx: ∀R,I2,K2,L1,l. L1 ⪤*[R, §l] K2.ⓘ{I2} →
216                              ∃∃I1,K1. K1 ⪤*[R, §l] K2 & L1 = K1.ⓘ{I1}.
217 #R #I2 #K2 #L1 #l #H elim (lfxs_inv_gref … H) -H *
218 [ #_ #H destruct
219 | #I1 #Z2 #K1 #Y2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
220 ]
221 qed-.
222
223 (* Basic forward lemmas *****************************************************)
224
225 lemma lfxs_fwd_zero_pair: ∀R,I,K1,K2,V1,V2.
226                           K1.ⓑ{I}V1 ⪤*[R, #0] K2.ⓑ{I}V2 → K1 ⪤*[R, V1] K2.
227 #R #I #K1 #K2 #V1 #V2 #H
228 elim (lfxs_inv_zero_pair_sn … H) -H #Y #X #HK12 #_ #H destruct //
229 qed-.
230
231 (* Basic_2A1: uses: llpx_sn_fwd_pair_sn llpx_sn_fwd_bind_sn llpx_sn_fwd_flat_sn *)
232 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ②{I}V.T] L2 → L1 ⪤*[R, V] L2.
233 #R * [ #p ] #I #L1 #L2 #V #T * #f #Hf #HL
234 [ elim (frees_inv_bind … Hf) | elim (frees_inv_flat … Hf) ] -Hf
235 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
236 qed-.
237
238 (* Basic_2A1: uses: llpx_sn_fwd_bind_dx llpx_sn_fwd_bind_O_dx *)
239 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⪤*[R, ⓑ{p,I}V1.T] L2 →
240                         R L1 V1 V2 → L1.ⓑ{I}V1 ⪤*[R, T] L2.ⓑ{I}V2.
241 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
242 qed-.
243
244 (* Basic_2A1: uses: llpx_sn_fwd_flat_dx *)
245 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ⓕ{I}V.T] L2 → L1 ⪤*[R, T] L2.
246 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
247 qed-.
248
249 lemma lfxs_fwd_dx: ∀R,I2,L1,K2,T. L1 ⪤*[R, T] K2.ⓘ{I2} →
250                    ∃∃I1,K1. L1 = K1.ⓘ{I1}.
251 #R #I2 #L1 #K2 #T * #f elim (pn_split f) * #g #Hg #_ #Hf destruct
252 [ elim (lexs_inv_push2 … Hf) | elim (lexs_inv_next2 … Hf) ] -Hf #I1 #K1 #_ #_ #H destruct
253 /2 width=3 by ex1_2_intro/
254 qed-.
255
256 (* Basic properties *********************************************************)
257
258 lemma lfxs_atom: ∀R,I. ⋆ ⪤*[R, ⓪{I}] ⋆.
259 #R * /3 width=3 by frees_sort, frees_atom, frees_gref, lexs_atom, ex2_intro/
260 qed.
261
262 (* Basic_2A1: uses: llpx_sn_sort *)
263 lemma lfxs_sort: ∀R,I1,I2,L1,L2,s.
264                  L1 ⪤*[R, ⋆s] L2 → L1.ⓘ{I1} ⪤*[R, ⋆s] L2.ⓘ{I2}.
265 #R #I1 #I2 #L1 #L2 #s * #f #Hf #H12
266 lapply (frees_inv_sort … Hf) -Hf
267 /4 width=3 by frees_sort, lexs_push, isid_push, ex2_intro/
268 qed.
269
270 lemma lfxs_pair: ∀R,I,L1,L2,V1,V2. L1 ⪤*[R, V1] L2 →
271                  R L1 V1 V2 → L1.ⓑ{I}V1 ⪤*[R, #0] L2.ⓑ{I}V2.
272 #R #I1 #I2 #L1 #L2 #V1 *
273 /4 width=3 by ext2_pair, frees_pair, lexs_next, ex2_intro/
274 qed.
275
276 lemma lfxs_unit: ∀R,f,I,L1,L2. 𝐈⦃f⦄ → L1 ⪤*[cext2 R, cfull, f] L2 →
277                  L1.ⓤ{I} ⪤*[R, #0] L2.ⓤ{I}.
278 /4 width=3 by frees_unit, lexs_next, ext2_unit, ex2_intro/ qed.
279
280 lemma lfxs_lref: ∀R,I1,I2,L1,L2,i.
281                  L1 ⪤*[R, #i] L2 → L1.ⓘ{I1} ⪤*[R, #⫯i] L2.ⓘ{I2}.
282 #R #I1 #I2 #L1 #L2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
283 qed.
284
285 (* Basic_2A1: uses: llpx_sn_gref *)
286 lemma lfxs_gref: ∀R,I1,I2,L1,L2,l.
287                  L1 ⪤*[R, §l] L2 → L1.ⓘ{I1} ⪤*[R, §l] L2.ⓘ{I2}.
288 #R #I1 #I2 #L1 #L2 #l * #f #Hf #H12
289 lapply (frees_inv_gref … Hf) -Hf
290 /4 width=3 by frees_gref, lexs_push, isid_push, ex2_intro/
291 qed.
292
293 lemma lfxs_bind_repl_dx: ∀R,I,I1,L1,L2,T.
294                          L1.ⓘ{I} ⪤*[R, T] L2.ⓘ{I1} →
295                          ∀I2. cext2 R L1 I I2 →
296                          L1.ⓘ{I} ⪤*[R, T] L2.ⓘ{I2}.
297 #R #I #I1 #L1 #L2 #T * #f #Hf #HL12 #I2 #HR
298 /3 width=5 by lexs_pair_repl, ex2_intro/
299 qed-.
300
301 (* Basic_2A1: uses: llpx_sn_co *)
302 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
303                ∀L1,L2,T. L1 ⪤*[R1, T] L2 → L1 ⪤*[R2, T] L2.
304 #R1 #R2 #HR #L1 #L2 #T * /5 width=7 by lexs_co, cext2_co, ex2_intro/
305 qed-.
306
307 lemma lfxs_isid: ∀R1,R2,L1,L2,T1,T2.
308                  (∀f. L1 ⊢ 𝐅*⦃T1⦄ ≡ f → 𝐈⦃f⦄) →
309                  (∀f. 𝐈⦃f⦄ → L1 ⊢ 𝐅*⦃T2⦄ ≡ f) →
310                  L1 ⪤*[R1, T1] L2 → L1 ⪤*[R2, T2] L2.
311 #R1 #R2 #L1 #L2 #T1 #T2 #H1 #H2 *
312 /4 width=7 by lexs_co_isid, ex2_intro/
313 qed-.
314
315 lemma lfxs_unit_sn: ∀R1,R2,I,K1,L2.
316                     K1.ⓤ{I} ⪤*[R1, #0] L2 → K1.ⓤ{I} ⪤*[R2, #0] L2.
317 #R1 #R2 #I #K1 #L2 #H
318 elim (lfxs_inv_zero_unit_sn … H) -H #f #K2 #Hf #HK12 #H destruct
319 /3 width=7 by lfxs_unit, lexs_co_isid/
320 qed-.
321
322 (* Basic_2A1: removed theorems 9:
323               llpx_sn_skip llpx_sn_lref llpx_sn_free 
324               llpx_sn_fwd_lref
325               llpx_sn_Y llpx_sn_ge_up llpx_sn_ge 
326               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx      
327 *)