]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
some improvements towards the confluence of lfpr ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/grammar/ceq.ma".
18 include "basic_2/relocation/lexs.ma".
19 include "basic_2/static/frees.ma".
20
21 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
22
23 definition lfxs (R) (T): relation lenv ≝
24                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⦻*[R, cfull, f] L2.
25
26 interpretation "generic extension on referred entries (local environment)"
27    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
28
29 definition R_confluent_lfxs: relation4 (relation3 lenv term term)
30                                        (relation3 lenv term term) … ≝
31                              λR1,R2,RP1,RP2.
32                              ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
33                              ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
34                              ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
35
36 (* Basic properties ***********************************************************)
37
38 lemma lfxs_atom: ∀R,I. ⋆ ⦻*[R, ⓪{I}] ⋆.
39 /3 width=3 by lexs_atom, frees_atom, ex2_intro/
40 qed.
41
42 lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
43                  L1 ⦻*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻*[R, ⋆s] L2.ⓑ{I}V2.
44 #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/
45 qed.
46
47 lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 →
48                  R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, #0] L2.ⓑ{I}V2.
49 #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/
50 qed.
51
52 lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
53                  L1 ⦻*[R, #i] L2 → L1.ⓑ{I}V1 ⦻*[R, #⫯i] L2.ⓑ{I}V2.
54 #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
55 qed.
56
57 lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
58                  L1 ⦻*[R, §l] L2 → L1.ⓑ{I}V1 ⦻*[R, §l] L2.ⓑ{I}V2.
59 #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/
60 qed.
61
62 lemma lfxs_pair_repl_dx: ∀R,I,L1,L2,T,V,V1.
63                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V1 →
64                          ∀V2. R L1 V V2 →
65                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V2.
66 #R #I #L1 #L2 #T #V #V1 * #f #Hf #HL12 #V2 #HR
67 /3 width=5 by lexs_pair_repl, ex2_intro/
68 qed-.
69
70 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
71                ∀L1,L2,T. L1 ⦻*[R1, T] L2 → L1 ⦻*[R2, T] L2.
72 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
73 qed-.
74
75 lemma pippo: ∀R1,R2,RP1,RP2. R_confluent_lfxs R1 R2 RP1 RP2 →
76              lexs_confluent R1 R2 RP1 cfull RP2 cfull.
77 #R1 #R2 #RP1 #RP2 #HR #f #L0 #T0 #T1 #HT01 #T2 #HT02 #L1 #HL01 #L2 #HL02  
78
79 (* Basic inversion lemmas ***************************************************)
80
81 lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆.
82 #R #I #Y2 * /2 width=4 by lexs_inv_atom1/
83 qed-.
84
85 lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆.
86 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
87 qed-.
88
89 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 →
90                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
91                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 &
92                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
93 #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
94 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
95 | lapply (frees_inv_sort … H1) -H1 #Hf
96   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
97   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
98   /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
99 ]
100 qed-.
101
102 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
103                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
104                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
105                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
106 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
107 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
108 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
109   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
110 ]
111 qed-.
112
113 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
114                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
115                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
116                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
117 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
118 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
119 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
120   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
121 ]
122 qed-.
123
124 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
125                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
126                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
127                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
128 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
129 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
130 | lapply (frees_inv_gref … H1) -H1 #Hf
131   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
132   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
133   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
134 ]
135 qed-.
136
137 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
138                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
139 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
140 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
141 qed-.
142
143 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
144                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
145 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
146 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
147 qed-.
148
149 (* Advanced inversion lemmas ************************************************)
150
151 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
152                              ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
153 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
154 [ #H destruct
155 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
156 ]
157 qed-.
158
159 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
160                              ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
161 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
162 [ #_ #H destruct
163 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
164 ]
165 qed-.
166
167 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
168                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
169                                       Y2 = L2.ⓑ{I}V2.
170 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
171 [ #H destruct
172 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
173   /2 width=5 by ex3_2_intro/
174 ]
175 qed-.
176
177 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
178                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
179                                       Y1 = L1.ⓑ{I}V1.
180 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
181 [ #_ #H destruct
182 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
183   /2 width=5 by ex3_2_intro/
184 ]
185 qed-.
186
187 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
188                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
189 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
190 [ #H destruct
191 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
192 ]
193 qed-.
194
195 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
196                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
197 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
198 [ #_ #H destruct
199 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
200 ]
201 qed-.
202
203 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
204                              ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
205 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
206 [ #H destruct
207 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
208 ]
209 qed-.
210
211 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
212                              ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
213 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
214 [ #_ #H destruct
215 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
216 ]
217 qed-.
218
219 (* Basic forward lemmas *****************************************************)
220
221 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
222 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
223 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
224 qed-.
225
226 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
227                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
228 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
229 qed-.
230
231 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
232 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
233 qed-.
234
235 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
236 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
237 qed-.
238
239 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
240 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
241 qed-.
242
243 (* Basic_2A1: removed theorems 24:
244               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
245               llpx_sn_bind llpx_sn_flat
246               llpx_sn_inv_bind llpx_sn_inv_flat
247               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
248               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
249               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
250               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
251 *)