]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
- degree-based equivalene for terms
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/relocation/lexs.ma".
18 include "basic_2/static/frees.ma".
19
20 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
21
22 definition lfxs (R) (T): relation lenv ≝
23                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⦻*[R, cfull, f] L2.
24
25 interpretation "generic extension on referred entries (local environment)"
26    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
27
28 definition R_frees_confluent: predicate (relation3 lenv term term) ≝
29                               λRN.
30                               ∀f1,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f1 → ∀T2. RN L T1 T2 →
31                               ∃∃f2. L ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1.
32
33 definition lexs_frees_confluent: relation (relation3 lenv term term) ≝
34                                  λRN,RP.
35                                  ∀f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 →
36                                  ∀L2. L1 ⦻*[RN, RP, f1] L2 →
37                                  ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1.
38
39 definition R_confluent2_lfxs: relation4 (relation3 lenv term term)
40                                         (relation3 lenv term term) … ≝
41                               λR1,R2,RP1,RP2.
42                               ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
43                               ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
44                               ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
45
46 (* Basic properties ***********************************************************)
47
48 lemma lfxs_atom: ∀R,I. ⋆ ⦻*[R, ⓪{I}] ⋆.
49 /3 width=3 by lexs_atom, frees_atom, ex2_intro/
50 qed.
51
52 lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
53                  L1 ⦻*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻*[R, ⋆s] L2.ⓑ{I}V2.
54 #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/
55 qed.
56
57 lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 →
58                  R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, #0] L2.ⓑ{I}V2.
59 #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/
60 qed.
61
62 lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
63                  L1 ⦻*[R, #i] L2 → L1.ⓑ{I}V1 ⦻*[R, #⫯i] L2.ⓑ{I}V2.
64 #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
65 qed.
66
67 lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
68                  L1 ⦻*[R, §l] L2 → L1.ⓑ{I}V1 ⦻*[R, §l] L2.ⓑ{I}V2.
69 #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/
70 qed.
71
72 lemma lfxs_pair_repl_dx: ∀R,I,L1,L2,T,V,V1.
73                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V1 →
74                          ∀V2. R L1 V V2 →
75                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V2.
76 #R #I #L1 #L2 #T #V #V1 * #f #Hf #HL12 #V2 #HR
77 /3 width=5 by lexs_pair_repl, ex2_intro/
78 qed-.
79
80 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
81                ∀L1,L2,T. L1 ⦻*[R1, T] L2 → L1 ⦻*[R2, T] L2.
82 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
83 qed-.
84
85 (* Basic inversion lemmas ***************************************************)
86
87 lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆.
88 #R #I #Y2 * /2 width=4 by lexs_inv_atom1/
89 qed-.
90
91 lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆.
92 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
93 qed-.
94
95 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 →
96                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
97                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 &
98                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
99 #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
100 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
101 | lapply (frees_inv_sort … H1) -H1 #Hf
102   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
103   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
104   /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
105 ]
106 qed-.
107
108 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
109                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
110                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
111                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
112 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
113 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
114 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
115   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
116 ]
117 qed-.
118
119 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
120                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
121                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
122                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
123 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
124 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
125 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
126   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
127 ]
128 qed-.
129
130 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
131                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
132                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
133                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
134 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
135 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
136 | lapply (frees_inv_gref … H1) -H1 #Hf
137   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
138   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
139   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
140 ]
141 qed-.
142
143 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
144                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
145 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
146 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
147 qed-.
148
149 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
150                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
151 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
152 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
153 qed-.
154
155 (* Advanced inversion lemmas ************************************************)
156
157 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
158                              ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
159 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
160 [ #H destruct
161 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
162 ]
163 qed-.
164
165 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
166                              ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
167 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
168 [ #_ #H destruct
169 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
170 ]
171 qed-.
172
173 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
174                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
175                                       Y2 = L2.ⓑ{I}V2.
176 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
177 [ #H destruct
178 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
179   /2 width=5 by ex3_2_intro/
180 ]
181 qed-.
182
183 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
184                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
185                                       Y1 = L1.ⓑ{I}V1.
186 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
187 [ #_ #H destruct
188 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
189   /2 width=5 by ex3_2_intro/
190 ]
191 qed-.
192
193 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
194                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
195 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
196 [ #H destruct
197 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
198 ]
199 qed-.
200
201 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
202                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
203 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
204 [ #_ #H destruct
205 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
206 ]
207 qed-.
208
209 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
210                              ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
211 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
212 [ #H destruct
213 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
214 ]
215 qed-.
216
217 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
218                              ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
219 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
220 [ #_ #H destruct
221 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
222 ]
223 qed-.
224
225 (* Basic forward lemmas *****************************************************)
226
227 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
228 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
229 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
230 qed-.
231
232 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
233                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
234 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
235 qed-.
236
237 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
238 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
239 qed-.
240
241 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
242 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
243 qed-.
244
245 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
246 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
247 qed-.
248
249 (* Basic_2A1: removed theorems 24:
250               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
251               llpx_sn_bind llpx_sn_flat
252               llpx_sn_inv_bind llpx_sn_inv_flat
253               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
254               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
255               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
256               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
257 *)